Preferred Language
Articles
/
2WHpMpkBdMdGkNqjeyPu
Comparative analysis of deep learning techniques for lung cancer identification
...Show More Authors

One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details provided by the X-ray images dataset, the study showed that the using of X-ray data set in our deep learning algorithm could provide promising results by getting accuracy of validation for both Convolution Neural Network and SequeezeNet models 93%, 76%, respectively while the validation loss in both models Convolution Neural Network and SequeezeNet 34%, 30% respectively, these promise results will make the physician give a swift decision in diagnosis of lung cancer and keeping the patients away from exposing to unnecessary extra radiation dose during the Computed Tomograph exam as well as the low cost of X-ray examination comparing with Computed Tomograph exam.

Scopus Crossref
View Publication
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Geological Journal
Wellbore Instability Analysis to Determine the Safe Mud Weight Window for Deep Well, Halfaya Oilfield
...Show More Authors

Wellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Asian Pacific Journal Of Cancer Prevention
Cytotoxic Activity of the Ethyl Acetate Extract of Iraqi Carica papaya Leaves in Breast and Lung Cancer Cell Lines
...Show More Authors

View Publication
Scopus (14)
Crossref (11)
Scopus Crossref
Publication Date
Fri May 17 2013
Journal Name
Sensors
Evolution of Electroencephalogram Signal Analysis Techniques during Anesthesia
...Show More Authors

Biosignal analysis is one of the most important topics that researchers have tried to develop during the last century to understand numerous human diseases. Electroencephalograms (EEGs) are one of the techniques which provides an electrical representation of biosignals that reflect changes in the activity of the human brain. Monitoring the levels of anesthesia is a very important subject, which has been proposed to avoid both patient awareness caused by inadequate dosage of anesthetic drugs and excessive use of anesthesia during surgery. This article reviews the bases of these techniques and their development within the last decades and provides a synopsis of the relevant methodologies and algorithms that are used to analyze EEG sig

... Show More
View Publication
Scopus (55)
Crossref (57)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2024
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
Classification of grapevine leaves images using VGG-16 and VGG-19 deep learning nets
...Show More Authors

The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi

... Show More
View Publication
Scopus (16)
Crossref (13)
Scopus Crossref
Publication Date
Tue Aug 03 2021
Journal Name
Key Engineering Materials
Comparative Study of Structural Behavior for Asymmetrical Castellated (Concavely - Curved Soffit) Steel Beams with Different Strengthening Techniques
...Show More Authors

The Asymmetrical Castellated concavely – curved soffit Steel Beams with RPC and Lacing Reinforcement improves compactness and local buckling (web and flange local buckling), vertical shear strength at gross section (web crippling and web yielding at the fillet), and net section ( net vertical shear strength proportioned between the top and bottom tees relative to their areas (Yielding)), horizontal shear strength in web post (Yielding), web post-buckling strength, overall beam flexure strength, tee Vierendeel bending moment and lateral-torsional buckling, as a result of steel section encasement. This study presents two concentrated loads test results for seven specimens Asymmetrical Castellated concavely – curved soffit Steel Be

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Deep Learning and Its Role in Diagnosing Heart Diseases Based on Electrocardiography (ECG)
...Show More Authors

Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Mon Aug 01 2016
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Wireless Indoor Localization Systems and Techniques: Survey and Comparative Study
...Show More Authors

<p>The popularity, great influence and huge importance made wireless indoor localization has a unique touch, as well its wide successful on positioning and tracking systems for both human and assists also contributing to take the lead from outdoor systems in the scope of the recent research works. In this work, we will attempt to provide a survey of the existing indoor positioning solutions and attempt to classify different its techniques and systems. Five typical location predication approaches (triangulation, fingerprinting, proximity, vision analysis and trilateration) are considered here in order to analysis and provide the reader a review of the recent advances in wireless indoor localization techniques and systems to hav

... Show More
View Publication
Scopus (49)
Crossref (37)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Cellular, Molecular And Biomedical Reports
Comprehensive analysis of microRNA (miRNA) in cancer cells
...Show More Authors

View Publication
Crossref (28)
Crossref