This study aims to clarify areas of using information technology in accounting and its impact on the profession of auditors by reviewing the concept, types, areas and the importance of information technology and its implications on the audit profession as well as to clarify the extent of contribution of information technology in developing of procedures of the audit profession and what its requirement, also this study aims to enhance the theoretical side by identifying the views of a sample of auditors in Arab countries selected (Iraq, Syria, Jordan), for the extent of using of information technology in their work and level of their perception for the importance of that
Water quality planning relies on Biochemical Oxygen Demand BOD. BOD testing takes five days. The Particle Swarm Optimization (PSO) is increasingly used for water resource forecasting. This work designed a PSO technique for estimating everyday BOD at Al-Rustumiya wastewater treatment facility inlet. Al-Rustumiya wastewater treatment plant provided 702 plant-scale data sets during 2012-2022. The PSO model uses the daily data of the water quality parameters, including chemical oxygen demand (COD), chloride (Cl-), suspended solid (SS), total dissolved solids (TDS), and pH, to determine how each variable affects the daily incoming BOD. PSO and multiple linear regression (MLR) findings are compared, and their perfor
... Show MoreWater quality planning relies on Biochemical Oxygen Demand BOD. BOD testing takes five days. The Particle Swarm Optimization (PSO) is increasingly used for water resource forecasting. This work designed a PSO technique for estimating everyday BOD at Al-Rustumiya wastewater treatment facility inlet. Al-Rustumiya wastewater treatment plant provided 702 plant-scale data sets during 2012-2022. The PSO model uses the daily data of the water quality parameters, including chemical oxygen demand (COD), chloride (Cl-), suspended solid (SS), total dissolved solids (TDS), and pH, to determine how each variable affects the daily incoming BOD. PSO and multiple linear regression (MLR) findings are compared, and their performance is evaluated usin
... Show MoreIn this study predication of crop coefficient (Kc) values through growing season for cucumber plant was conducted. A field experiment was carried out at AL Yusufiyah Township, in the Governorate of Baghdad, (latitude: 33°09' N, longitude: 44°24' E, and altitude: 34 m) in medium loam soil. The plant was cultivated inside the greenhouse under subsurface trickle irrigation system with soil water retention technology (SWRT) during the growing season 2017. Crop coefficient values were guessed from the direct method of measurements of daily crop evapotranspiration, while reference evapotranspiration was obtained from Agricultural Meteorology Project - Station of Baghdad - Abu-Ghraib. The obtained results were showed that crop coeffici
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show MoreThe research aims at shedding light on the impact of information technology in reducing tax evasion in the General Authority for Taxation. In order to achieve this, the research relied on the analysis of its variables as a main tool for collecting data and information. The results showed that there is a positive and positive effect of information technology on tax evasion. The impact of information technology on increasing tax revenues and reducing the phenomenon of tax evasion In the performance of the research sample, the research sought to highlight the importance of tax information technology through its data and information to the tax administration for the purpose of completing the process Taxpayers for persons subject to income ta
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.