The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing resource usage, managing mobility, ensuring cost‐efficiency, managing interference, and maximizing spectral efficiency. The fast advancement of artificial intelligence (AI) in several domains yields improved performance in contrast to traditional methods. Hence, including AI in 5G standards would enhance performance by catering to diverse end‐user applications. Initially, we provide an overview of concepts such as Industry 4.0, the 5G standard, and recent developments in the sphere of wireless communications in the future. The goal is to use 5G technology to look at current research problems. We present a new architecture for Industry 4.0 and 5G‐compliant smart healthcare systems. We develop and run the proposed model to investigate the current 5G methods using the Network Simulator (NS2). The results of the simulation show that 5G resource management and interference management approaches already in use face challenges including performance trade‐offs.
The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MoreThe research studied and analyzed the hybrid parallel-series systems of asymmetrical components by applying different experiments of simulations used to estimate the reliability function of those systems through the use of the maximum likelihood method as well as the Bayes standard method via both symmetrical and asymmetrical loss functions following Rayleigh distribution and Informative Prior distribution. The simulation experiments included different sizes of samples and default parameters which were then compared with one another depending on Square Error averages. Following that was the application of Bayes standard method by the Entropy Loss function that proved successful throughout the experimental side in finding the reliability fun
... Show MoreHealth and safety problem can be described by statistics it can only be understood by knowing and feeling the pain, suffering, and depression. Health and safety has a legal responsibility to protect it for everyone who can affect in the workplace. This includes manufacturers, suppliers, designers and controllers of work places and employees. Work injury is one of the major problems in manufacturing and production systems industries; it is reduced production efficiency and affects the cost. To gain flexibility from a traditional manufacturing system and production efficiency, this paper is about the application of estimating technology to preview and synthesis of Lost Time of Work Injuries in industry systems aims to provide a safe workin
... Show MoreBrainstorming has been a common approach in many industries where the result is not always accurate, especially when procuring automobile spare parts. This approach was replaced with a scientific and optimized method that is highly reliable, hence the decision to optimize the inventory inflation budget based on spare parts and miscellaneous costs of the typical automobile industry. Some factors required to achieve this goal were investigated. Through this investigation, spare parts (consumables and non-consumables) were found to be mostly used in Innoson Vehicle Manufacturing (IVM), Nigeria but incorporated miscellaneous costs to augment the cost of spare parts. The inflation rate was considered first due to the market's
... Show MoreThe research dealt with the design of the cost accounting system for the transport service and its Role in improving the efficiency of pricing decisions through the application of the cost system based on ABC activities. The main activities were defined and cost guides were to measure the cost of each service and to determine the cost of each service for the purpose of providing management with appropriate information and pricing decisions The problem of research in the lack of adoption by some public companies in the service sector on the cost accounting system to calculate the cost of service as well as the lack of identification of productive activities and service activities and therefore cannot make the appropriate decision t
... Show MoreThe aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show More