The aim of this study is to evaluating the antibacterial activity of Laurus nobilis leaves extract on E. coli isolates. Maceration and Soxhlet apparatus were used to prepare aqueous and methanolic extracts; total phenolic content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were conducted to determine the active compounds in the extracts. The results showed that both Laurus nobilis methanolic and aqueous extracts have a noticeable effect on scavenging free radicals. Free radical scavenging activity. The total phenolic contents were 28.60 ±0.12 and 16.58 ±0.11mg/g in 50 mg/ml, in methanolic and aqueous extracts respectively. The antibacterial activity of Laurus nobilis leaves extracts showed that the methanolic extract was more effective than aqueous extract in concentration 64mg/ml. Moreover, the result of the minimum inhibitory concentration (MIC) showed that the methanolic extract on E. coli isolates was 16 mg/ml, while the MIC values of aqueous extract were 64 and 128 mg/ml.
Reaction of L1 [((E)-N1-(nitrobenzylidene)benzene-1,2-diamine] and L2( m-aminophenol), and one equivalent of di- or tri-valent metals(Cr(ӀӀӀ), Mn(ӀӀ), Fe(ӀӀӀ), Co(ӀӀ), Ni(ӀӀ), Cu(ӀӀ) and Zn(ӀӀ) afforded the complexes [M(L1)(L2)2]Cl, M=Cr(ӀӀӀ) and Fe(ӀӀӀ) and the complexes [M(L1)(L2)2] M= Mn(ӀӀ), Co(ӀӀ), Ni(ӀӀ), Cu(ӀӀ) and Zn(ӀӀ). The structure of the Schiff base ligand and their complexes are characterized by (C:H:N), FT.IR, UV.Vis, 1HNMR, 13CNMR and mass spectral. The presence of metal in the complexes are characterized by flame atomic absorption. The spectral data of the complexes have revealed the octahedral geometry. The (L1), (L2) and mixed ligand metal complexes were screened for their ability as cataly
... Show MoreThe inhibitive action of Reactive Red (RR31) dye against corrosion of carbon steel in 1M acetic acid solution has been studied using gravimetric method at temperature ranged (288-318)K. The antibacterial activity for the different concentrations of RR31 dye against different bacterial species was studied. The experimental data indicates that this dye acts as a potential inhibitor for carbon-steel in acetic acid medium and the protection efficiency increase with increasing (RR31) dye. The adsorption of (RR31) dye on the carbon steel surface was found to follow Langmuir adsorption isotherm. Thermodynamic data for the adsorption process such as Gibbs free energy change ∆Gads, enthalpy change ∆Hads, and entropy change ∆Sads were estima
... Show MoreArum maculatum is traditionally used for the control of many diseases and illnesses such as kidney pain, liver injury, hemorrhoids. However, the detailed biomedical knowledge about this species is still lacking. This study reports on the bioactive components and the possible mechanisms underlying the antioxidant, anti-inflammatory and cytotoxic activity of A. maculatum leaf extract. Gas chromatography-mass spectrometry (GC-MS) was used for phytochemical analysis. Assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide ) (MTT) was used to determine the cytotoxicity in the murine cell line L20B upon exposure to different extract concentrations for 24 h. Enzyme-linked immunosorbent assay (ELISA) was used to detect pro-in
... Show MoreIntroduction and Aim: Klebsiella pneumoniae is a Gram-negative bacterium responsible for a wide range of infections, including respiratory tract infections (RTIs). This research was aimed to study the antibacterial and antibiofilm effect of AgNPs produced by Gram positive and negative bacteria on RTIs associated with K. pneumoniae. Materials and Methods: The biofilm formation of K. pneumoniae was determined by tube method qualitatively from select bacterial species characterized by UV-Visible spectroscopy. The antibacterial susceptibility of the bacteria AgNPs was tested for their antibacterial and antibiofilm activity on a clinical isolate of K. pneumoniae. Results: K. pneumoniae isolated from RTIs were strong biofilm producers. The ant
... Show MoreIntroduction and Aim: Klebsiella pneumoniae is a Gram-negative bacterium responsible for a wide range of infections, including respiratory tract infections (RTIs). This research was aimed to study the antibacterial and anti-biofilm effect of AgNPs produced by Gram positive and negative bacteria on RTIs associated with K. pneumoniae. Materials and Methods: The biofilm formation of K. pneumoniae was determined by tube method qualitatively from select bacterial species characterized by UV-Visible spectroscopy. The antibacterial susceptibility of the bacteria AgNPs was tested for their antibacterial and antibiofilm activity on a clinical isolate of K. pneumoniae. Results: K. pneumoniae isolated from RTIs were strong biofilm prod
... Show MoreAntibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. So, the growth of Uropathgenic Escherichia coli (UPEC) isolates with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that thwart therapy for (UTIs) has been detected and has straight squeezed costs and extended hospital stays. This study aims to detect MDR- and XDR-UPEC isolates. Out of 42 UPEC clinical isolates were composed from UTI patients. The bacterial strains were recognized by standard laboratory protocols. Susceptibility to antibiotic was measured by the standard disk diffusi
... Show MoreThe purpose of this study to synthesize and characterize silver nanoparticles using phenolic compounds obtained from Camellia sinensis, to test the antibacterial properties of biosynthesized nanoparticles on the formation of biofilms in multidrug-resistant Pseudomonas aeruginosa. Ten isolates of P. aeruginosa were obtained from the Genetic Engineering and Biotechnology Institute laboratories of the University of Baghdad. By using the VITEK-2 system and culturing the isolates on cetrimide agar, the diagnosis was confirmed. Camellia sinensis silver nanoparticles (CAgNPs) were created using an extract of the plant's aqueous and methanolic leaves. Based on the results of the nanoparticle synthesis, spherical nanoparticles that may be single or
... Show MoreBackground: A great dental and biomedical interest had been paid to silver nanoparticles because of their antimicrobial activity. Objective: To evaluate the antimicrobial and cytotoxic activity of a newly developed Nano-silver fluoride that was synthesized from moringa oleifera leaf extract against S. mutants. Material and method: The green synthesis method was used to prepare Nano-silver fluoride from moringa oleifera leaf extract. The minimum inhibitory concentration and the minimum bactericidal concentration were evaluated using brain heart infusion plates, while the cytotoxicity was evaluated by the hemolytic activity. Results: Nano-silver fluoride had a bactericidal and bacteriostatic effect (MIC was 60 ppm and MBC was 120 pp
... Show MoreBiomedical alloy 316L stainless steel enhancing to replace biological tissue or to help stabilize a biological structure, such as bone tissue, enhancing were coated with deposition a thin layer of silver nanoparticles as anti-bacterial materials by using DC- magnetron sputtering device. The morphology surface of The growth nanostructure under the influence of different working pressure were studied by atomic force microscope. The average grain size decrease but roughness of the silver thin layer was increased with‖ ―increasing the working pressure. The thickness of silver thin layer was increased from 107 nm at 0.08 mbar to 126 nm at 1.1 mbar. Antimicrobial activity of silver thin layers at different working pressure were studied. Th
... Show MoreAntibacterial Activity of Bioactive Glass 45S5 and Chitosan Incorporated as Fillers into Gutta Percha, Ahmed I AL-Jobory*, Raghad AL-Hashimi