Passive optical network (PON) is a point to multipoint, bidirectional, high rate optical network for data communication. Different standards of PONs are being implemented, first of all PON was ATM PON (APON) which evolved in Broadband PON (BPON). The two major types are Ethernet PON (EPON) and Gigabit passive optical network (GPON). PON with these different standards is called xPON. To have an efficient performance for the last two standards of PON, some important issues will considered. In our work we will integrate a network with different queuing models such M/M/1 and M/M/m model. After analyzing IPACT as a DBA scheme for this integrated network, we modulate cycle time, traffic load, throughput, utilization and overall delay mathematically for single OLT and multiOLT EPON system, and average delay and throughput for single OLT GPON system. A comparison of average delay and throughput between EPON and GPON is introduced with the same number of ONUs. The results show that the proposed multi-OLT EPON system can supports existing bandwidth allocation schemes with better performance than the single-OLT EPON. Cycle delay and average delay is decreased with multi-OLT system than in single OLT system, while throughput of multi-OLT system is higher than throughput of single OLT system. Splitting ratio and throughput in GPON is much higher than in EPON.
Cooperation spectrum sensing in cognitive radio networks has an analogy to a distributed decision in wireless sensor networks, where each sensor make local decision and those decision result are reported to a fusion center to give the final decision according to some fusion rules. In this paper the performance of cooperative spectrum sensing examines using new optimization strategy to find optimal weight and threshold curves that enables each secondary user senses the spectrum environment independently according to a floating threshold with respect to his local environment. Our proposed approach depends on proving the convexity of the famous optimization problem in cooperative spectrum sensing that stated maximizing the probability of detec
... Show MoreTransport layer is responsible for delivering data to the appropriate application process on the host computers. The two most popular transport layer protocols are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP is considered one of the most important protocols in the Internet. UDP is a minimal message-oriented Transport Layer protocol. In this paper we have compared the performance of TCP and UDP on the wired network. Network Simulator (NS2) has been used for performance Comparison since it is preferred by the networking research community. Constant bit rate (CBR) traffic used for both TCP and UDP protocols.
Background: Mini implant stability is primarily related to local bone density; no studies have evaluated bone density related to mini implant placement for orthodontic anchorage between different age groups in the maxilla and the mandible. The present research aims to evaluate side, gender, age, and regional differences in bone density of the alveolar bone at various orthodontic implant sites. Materials and method: Fifty three individuals who were divided into two groups according to their age into: group I (ages 16-20 years) and group II (ages 21-29 years) had subjected to clinical examination, then 64-multislice computed tomography scan data were evaluated and bone density was measured in Hounsfield unit at 102 points (51 in the maxilla
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Light naphtha treatment was achieved over 0.3wt%Pt loaded-alumina, HY-zeolite and Zr/W/HY-zeolite catalysts at temperature rang of 240-370°C, hydrogen to hydrocarbon mole ratio of 1-4 0.75-3 wt/wt/hr, liquid hourly space velocity (LHSV) and at atmospheric pressure. The hydroconversion of light naphtha over Pt loaded catalyst shows two main reactions; hydrocracking and hydroisomerization reactions. The catalytic conversion of a light naphtha is greatly influenced by reaction temperature, LHSV, and catalyst function. Naphtha transformation (hyroisomerization, cracking and aromatization) increases with decreasing LHSV and increasing temperature except hydroisomerization activity increases with increasing of temperature till 300°C then began
... Show MoreAbstract
In this work, the plasma parameters (electron temperature (Te), electron density( ne), plasma frequency (fp) and Debye length (λD)) have been studied by using the spectrometer that collect the spectrum of Laser produce CdTe(X):S(1-X) plasma at X=0.5 with different energies. The results of electron temperature for CdTe range 0.758-0.768 eV also the electron density 3.648 1018 – 4.560 1018 cm-3 have been measured under vacuum reaching 2.5 10-2 mbar .Optical properties of CdTe:S were determined through the optical transmission method using ultraviolet visible spectrophotometer within the r
... Show MoreThe study aimed to determine the extent of market knowledge in the companies researched, as if market knowledge is qualified to lead the companies researched to achieve marketing performance , for this purpose, formulated hypotheses of the study in three hypotheses, the first major hypothesis "there is a correlation with significance of market knowledge to improve the marketing performance , "while the second major hypothesis, "there is a significant moral influence of market knowledge to improve the marketing performance " these hypotheses targeting to determine the role played by market knowledge in the leadership of companies researched to achieve improvement in marketing perfor
... Show MoreThis work is concerned with designing two types of controllers, a PID and a Fuzzy PID, to be used
for flying and stabilizing a quadcopter. The designed controllers have been tuned, tested, and
compared using two performance indices which are the Integral Square Error (ISE) and the Integral
Absolute Error (IAE), and also some response characteristics like the rise time, overshoot, settling
time, and the steady state error. To try and test the controllers, a quadcopter mathematical model has
been developed. The model concentrated on the rotational dynamics of the quadcopter, i.e. the roll,
pitch, and yaw variables. The work has been simulated with “MATLAB”. To make testing the
simulated model and the controllers m