Passive optical network (PON) is a point to multipoint, bidirectional, high rate optical network for data communication. Different standards of PONs are being implemented, first of all PON was ATM PON (APON) which evolved in Broadband PON (BPON). The two major types are Ethernet PON (EPON) and Gigabit passive optical network (GPON). PON with these different standards is called xPON. To have an efficient performance for the last two standards of PON, some important issues will considered. In our work we will integrate a network with different queuing models such M/M/1 and M/M/m model. After analyzing IPACT as a DBA scheme for this integrated network, we modulate cycle time, traffic load, throughput, utilization and overall delay mathematically for single OLT and multiOLT EPON system, and average delay and throughput for single OLT GPON system. A comparison of average delay and throughput between EPON and GPON is introduced with the same number of ONUs. The results show that the proposed multi-OLT EPON system can supports existing bandwidth allocation schemes with better performance than the single-OLT EPON. Cycle delay and average delay is decreased with multi-OLT system than in single OLT system, while throughput of multi-OLT system is higher than throughput of single OLT system. Splitting ratio and throughput in GPON is much higher than in EPON.
Specialized hardware implementations of Artificial Neural Networks (ANNs) can offer faster execution than general-purpose microprocessors by taking advantage of reusable modules, parallel processes and specialized computational components. Modern high-density Field Programmable Gate Arrays (FPGAs) offer the required flexibility and fast design-to-implementation time with the possibility of exploiting highly parallel computations like those required by ANNs in hardware. The bounded width of the data in FPGA ANNs will add an additional error to the result of the output. This paper derives the equations of the additional error value that generate from bounded width of the data and proposed a method to reduce the effect of the error to give
... Show MoreThis study has dealt with, the issue of classification of rural road network , in addition to prepare a suggested for the classification for this network in Iraq , this classification account , the specifications and characteristics of rural roads, population, and the range taking of settlements , then this classification was applied on the rural road network in the Najaf province there are four categories of classification ,the first is major arterial rural roads divided into two major arterial and minor arterial roads , while the second category collected roads which was divided into minor arterial roads and main collected roads. The third category was represented by Local Roads , it has been divided into paved roads and unpaved, the f
... Show MoreIn this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.
Image Fusion Using A Convolutional Neural Network
This paper explores VANET topics: architecture, characteristics, security, routing protocols, applications, simulators, and 5G integration. We update, edit, and summarize some of the published data as we analyze each notion. For ease of comprehension and clarity, we give part of the data as tables and figures. This survey also raises issues for potential future research topics, such as how to integrate VANET with a 5G cellular network and how to use trust mechanisms to enhance security, scalability, effectiveness, and other VANET features and services. In short, this review may aid academics and developers in choosing the key VANET characteristics for their objectives in a single document.
The fast evolution of cyberattacks in the Internet of Things (IoT) area, presents new security challenges concerning Zero Day (ZD) attacks, due to the growth of both numbers and the diversity of new cyberattacks. Furthermore, Intrusion Detection System (IDSs) relying on a dataset of historical or signature‐based datasets often perform poorly in ZD detection. A new technique for detecting zero‐day (ZD) attacks in IoT‐based Conventional Spiking Neural Networks (CSNN), termed ZD‐CSNN, is proposed. The model comprises three key levels: (1) Data Pre‐processing, in this level a thorough cleaning process is applied to the CIC IoT Dataset 2023, which contains both malicious and t
Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreIn this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe
... Show MoreNumerical study of separation control on symmetrical airfoil, four digits (NACA
0012) by using rotating cylinder with double steps on its upper surface based on the computation of Reynolds-average Navier- Stokes equations was carried out to find the optimum configuration of unconventional airfoil for best aerodynamics performance. A model based on collocated Finite Volume Method was developed to solve the governing equations on a body-fitted coordinate system. A revised (k-w) model was proposed as a known turbulence model. This model was adapted to simulate the control effects of rotating cylinder. Numerical solutions were performed for flow around unconventional airfoil with cylinder to main stream velocities ratio in the range
... Show More