Rapid population growth and the development of industries result in an increase in solid waste. Glass, which represents a large proportion of solid waste, can be used in construction applications. The utilization of recycled glass waste in the asphalt mixture is considered an environmentally-friendly application. In this laboratory study, glass bottles were recycled by crushing, grinding, and sieving them into particles that pass through sieve No. 200 to be used as a partial replacement for the filler in the hot mixture asphalt of wearing course Type-A. The ratios (4, 4.3, 4.6, 4.9, 5.2,5.5) were used to determine the optimum asphalt content (OAC), and three ratios (30, 60, and 90) were used for the replacement of limestone powder filler to determine the optimum value of bitumen for glass-containing mixtures (GM). The glass-asphalt mixtures were compared with the control mixture using the Marshall test (stability, flow, voids, density), Moisture resistance was examined using (indirect tensile strength test), also scanning electron microscope photos of the glass-asphalt mixture sample were discussed was found that the glass asphalt achieved improvement in the properties of the asphalt mix as well as reduced the optimum bitumen content and also had a strong economic effect compared to the control mixture.
One of the functions of Al-Shanasheel was to cool the air, but they could not compete with the Evaporative coolers, As Al-Shanasheel were a sign of luxury and wealth in Arab societies and were only built in homes of wealthy families, they are more expensive than the evaporative coolers, depending on the level of the decoration and the sculpting used to create them aesthetically, where People replaced them with evaporative coolers for their low cost, and higher cooling efficiency. One of the reasons for the disappearance of Al-Shanasheel is the absence of the functional need for them, in exchange for the high cost of construction. The diminished role of Al-Shanasheel in the contemporary urban scene, although they are one of the most
... Show MoreBasrah crude oil Vacuum residue 773+ K with specific gravity 1.107 and 4.87wt. % sulfur, was treated with hexane commercial fraction provided from Al-Taji Gas Company for preparing deasphaltened oil(DAO)suitable for hydrotreating process. Deasphaltening was carried out with 1h mixing time, 10ml:1g solvent to oil ratio and at room temperature. Hexane deasphaltened oil was hydrotreated on presulfied commercial Co-Mo/γ-Al2O3 catalyst in a trickle bed reactor. The hydrotreating process was carried out at temperature 660 K,LHSV 1.3 h^ –1, H2/oil ratio 300 l/l and constant pressure of 4MPa. The hydrotreated product was distillated under vacuum distillation unit. It is found that the mixture of 75% of vacuum residue with 25% anthracene satisfie
... Show MoreFrequently, Load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some sections poorly drained are the main failure types found in some of the newly constructed road within Baghdad as well as other cities in Iraq. The use of hydrated lime in pavement construction could be one of the possible steps taken in the direction of improving pavement performance and meeting the required standards. In this study, the mechanistic properties of asphalt concrete mixes modified with hydrated lime as a partial replacement of limestone dust mineral filler were evaluated. Seven replacement rates were used; 0, 0.5, 1, 1.5, 2, 2.5 and 3 percent by weight of aggregate. Asphalt concrete mixes were prepared at their
... Show MoreMineral filler is one of important materials and affecting on properties and quality of asphalt mixtures .There are different types of mineral filler depended on cost and quality , the matter encourages us to achieve this study to evaluate hydrated lime filler effects on properties of asphalt mixes related with strength and durability. Conventional asphaltic concrete mixtures with Portland cement and soft sandstone fillers and mixtures modified with hydrated lime were evaluated for their fundamental engineering properties as defined by Marshall properties , index of retained strength , indirect tensile strength , permanent deformation characteristics , and fatigue resistance .A typical dense graded mixture employed in construction
... Show MorePermanent deformation (rutting) of asphalt mixtures is one of the major forms of distress. Aggregate gradation is one of the most important factors affecting the permanent deformation of asphalt mixtures. Other variables are also important to understand their effects on the mixture such as temperature, binder content and compaction level. For this purpose 6 different aggregate gradations have been chosen and each one of them has been manufactured / tested with different variables. The results showed that at relatively low temperature there is little effect of aggregate packing on the permanent deformation. However, as the temperature increases the effect of gradation becomes apparent, in that the better the packing the better the resistance
... Show MoreAssessment of the in service behavior of asphalt stabilized subgrade soil under environmental impact has got little attention by the research workers. However, the sustainability of the roadway depends mainly on the welfare of its subgrade soil condition. In this work, Gypseous soil was stabilized with asphalt emulsion for subgrade usage, the durability of the mixture has been assessed in term of its ability to maintain the compressive strength when practicing the environmental impacts. Specimens of 38 mm in diameter , and 76 mm in height have been prepared with various water-asphalt percentages, and subjected to 30 cycles of (freezing-thawing), (heating-cooling) and (wetting-drying) processes. Specimens have been tested for unconfined comp
... Show MorePorous asphalt paving is a modern design method that differs from the usual asphalt pavements' traditional designs. The difference is that the design structure of porous pavements allows the free passage of fluids through their layers, which controls or reduces the amount of runoff or water accumulated in the area by allowing the flow of rain and surface runoff. The cross-structure of this type of paving works as a suitable method for managing rainwater and representing groundwater recharge. The overall benefits of porous asphalt pavements include environmental services and safety features, including controlling the build-up of contaminated metals on the road surface, rainwater management, resistance to slipping ac
... Show MoreAging of asphalt pavements typically occurs through oxidation of the asphalt and evaporation of the lighter maltenes from the binder. The main objective of this study is to evaluate influence of aging on performance of asphalt paving materials.nAsphalt concrete mixtures, were prepared, and subjected to short term aging (STA) procedure which involved heating the loose mixtures in an oven for two aging period of (4 and 8) hours at a temperature of 135 o C. Then it was subject to Long term aging (LTA) procedure using (2 and 5) days aging periods at 85 o C for Marshall compacted specimens. The effect of aging periods on properties of asphalt concrete at optimum asphalt content such as Marshall Properties, indirect tensile strength at 25 o C,
... Show MoreLignin has emerged as a promising asphalt binder modifier due to its sustainable and renewable nature, with the potential to improve flexible pavement performance. This study investigates the use of Soda Lignin Powder (SLP), derived from Pinus wood sawdust via alkaline treatment, as an asphalt modifier to enhance mixture durability. SLP was characterized using Fourier Transformation Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM/EDX), revealing significant changes in its chemical structure post-extraction. These analyses showed the presence of phenolic units, including hydroxyphenyl propane, syringyl, and guaiacyl units. The morphology of SLP was identified
... Show MoreUndoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechani
... Show More