In this paper, silicon carbonitried thin films were prepared by the method of photolysis of the silane (SiH4) and ethylene (C2H4) gases, with and without ammonia gas (NH3), which is represented by the ratio between the (PNH3) and (PSiH4 + PC2H4 + PNH3), (which assign by the letter X), X has the values (0, 0.13, 0.33). This method carried out by using TEA-CO2 laser, on glass substrate at (375 oC), deposition rate (0.416-0.833) nm/pulse thin film thickness of (500-1000) nm. The optical properties of the films were studied by using Absorbance and Transmittance spectrums in wavelength range of (400-1100) nm, the results showed that the electronic transitions is indirect and the energy gap for the SiCN films increase with increasing of nitrog
... Show MoreBackground: Deterioration of maxillofacial silicone properties due to microbial colonization is a common problem and leads to the replacement of the prosthesis. Incorporation of the antimicrobial agent into the silicone could be a solution. The purpose of this study was to evaluate the effect of silver-zinc zeolite addition on some mechanical properties of a maxillofacial silicone (VST-50). Materials and methods: Total 120 specimens were fabricated and divided into 3 groups: 40 specimens for tear strength test, 40 specimens for tensile and percentage of elongation tests and 40 specimens for Shore A hardness and surface roughness. Each group was divided into 4 subgroups according to the amount of zeolite added (0% “control”, 0.5%, 1% and
... Show MoreIn this research, a sensor for chemical solutions was designed and formed using optical fiber-based on a surface Plasmon resonance technology. A single-mode optical fiber with three different diameters (25, 45 and 65) µm was used, respectively. The second layer of the low refractive fiber was replaced by gold, which was electrically deposited at 40 µm thickness. For each of the three types of optical fiber, different saline concentrations (different index of refraction) were used to evaluate the performance of the refractive index sensor (chemical sensor) by measuring its sensitivity and resolutions. The highest values we could get for these two parameters were 240mm/RIU, and 6*10-5 RIU respectively, when the diameter of a
... Show MoreOne of the major problems in modern construction is the accumulation of construction and demolition waste; this study thus examines the consumption of waste brick in concrete based on the use of blended nano brick powder as replacement for cement and as a fine aggregate. Seven concrete mixes were developed according to ACI 211.1 using recycled waste brick. Nano powder brick at 0, 5, and 10% was used as a replacement by cement weight, with other mixes featuring 10, 20, and 30% partial replacement by volume of river sand with brick. The experimental results for replacement of cement with nano brick powder showed an enhancement in mechanical properties (compressive, flexural, and tensile strength) at 7,
Alloys of InxSe1-x were prepared by quenching technique with
different In content (x=10, 20, 30, and 40). Thin films of these alloys
were prepared using thermal evaporation technique under vacuum of
10-5 mbar on glass, at room temperature R.T with different
thicknesses (t=300, 500 and 700 nm). The X–ray diffraction
measurement for bulk InxSe1-x showed that all alloys have
polycrystalline structures and the peaks for x=10 identical with Se,
while for x=20, 30 and 40 were identical with the Se and InSe
standard peaks. The diffraction patterns of InxSe1-x thin film show
that with low In content (x=10, and 20) samples have semi
crystalline structure, The increase of indium content to x=30
decreases degree o
Porous silicon (P-Si) has been produced in this work by photoelectrochemical (PEC) etching process. The irradiation has been achieved using diode laser of (2 W) power and 810 nm wavelength. The influence of various irradiation times on the properties of P-Si material such as P-Si layer thickness, surface aspect, pore diameter and the thickness of walls between pores as well as porosity and etching rate was investigated by depending on the scanning electron micrograph (SEM) technique and gravimetric measurements.
Asphalt binder is a thermoplastic material that conducts as an elastic solid at lower service temperatures or throughout fast loading rate. At a high temperature or slow rate of loading, asphalt binder conducts as a different liquid. The classical duplication generates a required to assess the mechanical properties of asphalt concrete at the anticipated service temperature to reduce the stress cracking, which happens at lower temperatures, fatigue, and the plastic deformation at higher temperatures (rutting). In this study, an achievement was made to assess the effect of temperature on the mechanical characteristics of asphalt concrete mixes. A total of 132 asphalt concrete samples were attended utilizing two asphalt cement grades (40-50) a
... Show MoreIn this work ,pure and doped(CdO)thin films with different concentration of V2O5x (0.0, 0.05, 0.1 ) wt.% have been prepared on glass substrate at room temperature using Pulse Laser Deposition technique(PLD).The focused Nd:YAG laser beam at 800 mJ with a frequency second radiation at 1064 nm (pulse width 9 ns) repetition frequency (6 Hz), for 500 laser pulses incident on the target surface At first ,The pellets of (CdO)1-x(V2O5)x at different V2O5 contents were sintered to a temperature of 773K for one hours.Then films of (CdO)1-x(V2O5)x have been prepared.The structure of the thin films was examined by using (XRD) analysis..Hall effect has been measured in orded to know the type of conductivity, Finally the solar cell and the effici
... Show More