We investigate the interaction of proton with a solid target, describing the wake effects by taking fitted parameters with experimental values of energy loss function ELF for copper using the dielectric function of random phase approximation (RPA). The results exhibited a damped oscillatory behavior in the longitudinal direction behind the projectile. In addition, the wake potential becomes asymmetric around the z-axis with proton velocity values higher than Fermi velocity, as well as it depends on the position of projectile in cylindrical coordinates.
Some coordination complexes of Co(??), Ni(??), Cu(??), Cd(??) and Hg(??) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(??) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (??) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahedral st
... Show MoreThis study describes preparation a new series of tetra-dentate N2O2 dinuclear complexes Cr(III), Co(II)and Cu(II) of the Schiff base 2-[5-(2-hydroxy-phenyl)-1,3,4-thiadiazol-2-ylimino]-methyl-naphthalen-1-ol], (LH2) derived from 1-hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. These ligands were characterized by FT-IR, UV-Vis, Mass spectra, elemental analysis, and 1H-NMR. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, thermal Analysis (TGA), and metal analysis by atomic absorption. The stoichiometry of metal to ligand, magnetic susceptibility, and electronic spectra measurements show an octahedral geom
... Show MoreThe research includes the synthesis and identification of the mixed ligands complexes of M 2 Ions in general composition ,[M(Leu) 2 (SMX)] Where L leucine (C 6 H 13 NO 2 )symbolized (LeuH) as a primary ligand and Sulfamethoxazole C 10 H 11 N 3 O 3 S) symbolized (SMX)) as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in(v/v) ethanol /water as solvent containing NaOH. The reaction required the following [(metal: 2(Na Leu --): (SMX )] molar ratios with M(II) ions, Were M ( Mn ( II),Co (II),Ni(II),Cu( II),Zn (II),Cd(II)and Hg( The UV Vis and magnetic moment data revealed an octahedral geometry around M(II), The conductivity data show a non electrolytic nature of the complexes . The
... Show MoreThe research includes the synthesis and identification of the mixed ligands complexes of M+2ions in general composition[M(Asn)2(SMX)] Where L- Aspargine (C4H8N2O3)symbolized (AsnH) as a primary ligand and Sulfamethoxazole(C10H11N3O3S) symbolized (SMX) as a secondary ligand. The ligands and the metal chlorides were brought in to reaction at room temperature in(v/v) ethanol /water as solvent containing NaOH. The reaction required the following [(metal: 2(Na+Asn-): (SMX)] molar ratios with M(II) ions, Where: M(II)=Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). The UV–Vis and magnetic moment data revealed an octahedral geometry around M(II), The conductivity data show a non-electrolytic nature of the complexes. The antimicrobial a
... Show Moresynthesis and characterization of New Bidentate schiff base Ligand Type(NO)Donor Atoms Derived from isatin and 3-Amino benzoic acid and Its complexes with Co(||),Cu(||),Cd(||)and Hg(||)Ions
Tetradentate complexes type [M (HL) 2] were prepared from the reaction of 2-hydroxy -1, 2-diphynel-ethanone oxime [H2L] and KOH with ( Mn II, Fe II, Co II, Ni II , Cu II and Hg II ), in methanol with (2:1) metal: ligand ratio. The general formula for Cu II and Mn II complexes are [M (HL) 2 Cl.H2O] K, for Co II [Co (HL) 2. H2O] and [M (HL) 2] for the rest of complexes. All compounds were characterised by spectroscopic methods, I.R, U.V-Vis, H.P.L.C, atomic absorption and conductivity measurements chloride content. From the data of these measurements, the proposed molecular structures for Fe II and Hg II complexes are tetrahedrals, while Mn II and Cu II complexes are octahedrals, Ni II complex adopting square planar structure and the complex
... Show MoreSchiff base (methyl 6-(2- (4-hydroxyphenyl) -2- (1-phenyl ethyl ideneamino) acetamido) -3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylate)Co(II), Ni(II), Cu (II), Zn (II), and Hg(II)] ions were employed to make certain complexes. Metal analysis M percent, elemental chemical analysis (C.H.N.S), and other standard physico-chemical methods were used. Magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identified. Theoretical treatment of the generated complexes in the gas phase was performed using the (hyperchem-8.07) program for molecular mechanics and semi-empirical computations. The (PM3) approach was used to determine the heat of formation (ΔH˚f), binding energy (ΔEb), an
... Show More
Diazotization reaction between quinolin-2-ol and (2-chloro-1-(4-(N-(5-methylisoxazol-3-yl)sulfamoyl)phenyl)-2l4-diazyn-1-ium was carried out resulting in ligand-HL, this in turn reacted with the next metal ions (Ni2+, Pt4+, Pd2+, and Mn2+) forming stable complexes with unique geometries such as (tetrahedral for both Ni2+ and Mn2+, octahedral for Pt4+ and square planer for Pd2+ ). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and the coordination with metal ion through it. Pyrolysis (TGA &
... Show More