This research investigated the influence of water-absorbent polymer balls (WAPB) on reinforced concrete beams’ structural behavior experimentally. Four self-compacted reinforced concrete beams of identical geometric layouts 150 mm × 200 mm × 1,500 mm, reinforcement details, and compressive strength
The river water salinity is a major concern in many countries, and salinity can be expressed as total dissolved solids. So, the water salinity impact of the river is one of the major factors effects of water quality. Tigris river water salinity increase with streamline and time due to the decrease in the river flow and dam construction from neighboring countries. The major objective of this research to developed salinity model to study the change of salinity and its impact on the Al-Karkh, Sharq Dijla, Al-Karama, Al-Wathba, Al-Dora, and Al-Wihda water treatment plant along Tigris River in Baghdad city using artificial neural network model (ANN). The parameter used in a model built is (Turbidity, Ec, T.s, S.s, and TDS in)
... Show MoreIn this paper, effective slab width for the composite beams is investigated with special emphasis on the effect of web openings. A three dimensional finite element analysis, by using finite element code ANSYS, is employed to investigate shear lag phenomenon and the resulting effective slab width adopted in the classical T-beam approach. According to case studies and comparison with limitations and rules stipulated by different standards and codes of practice it is found that web openings presence and panel proportion are the most critical factors affecting effective slab width, whereas concrete slab thickness and steel beam depth are less significant. The presence of web opening reduces effective slab width by about 21%.
... Show MoreThe study aims mainly to evaluate the performance of Sharq Dijila water treatment plant in removing turbidity for the period of 1-4-2001 to 31-3-2004. Daily data for turbidity of raw, clarified, filtered, and supplied water were analyzed. The results of the study showed that there is a wide variation in turbidity levels of raw water fluctuating between 10-1000 NTU with mean value of 41.3 NTU. Turbidity values of the clarified water varied between 1.4-77 NTU. Based on the turbidity value of 10 NTU and 20 NTU (the design maximum turbidity) the readings gave an acceptable percentage of 32.4% and 86% respectively. The turbidity of filtered water ranged between 0.2-4.5 NTU which are completely in compliance with Iraqi and WHO standards. In ac
... Show MoreThis work is concerned with the study of the effect of cement types, particularly OPC and SRPC, which are the main cement types manufactured in Iraq. In addition, study the effect of mineral admixtures, which are HRM and SF on the resistance of high performance concrete (HPC) to internal sulphate attack. The HRM is used at (10%) and SF is used at (8 and 10)% as a partial replacement by weight of cement for both types. The percentages of sulphate investigated are (1,2 and 3)% by adding natural gypsum as a partial replacement by weight of fine aggregate. The tests carried out in this work are: compressive strength, flexural strength, ultrasonic pulse velocity, and density at the age of 7, 28, 90 and 120 days.
The r
... Show MoreAbstract
Theoretical and experimental methodologies were assessed to test curved beam made of layered composite material. The maximum stress and maximum deflection were computed for each layer and the effect of radius of curvature and curve shape on them. Because of the increase of the use of composite materials in aircraft structures and the renewed interest in these types of problems, the presented theoretical assessment was made using three different approaches: curved beam theory and an approximate 2D strength of material equations and finite element method (FEM) analysis by ANSYS 14.5 program for twelve cases of multi-layered cylindrical shell panel differs in fibe
... Show MoreIn this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio
... Show MoreIn this paper, a methodology is presented for determining the stress and strain in structural concrete sections, also, for estimating the ultimate combination of axial forces and bending moments that produce failure. The structural concrete member may have a cross-section with an arbitrary configuration, the concrete region may consist of a set of subregions having different characteristics (i.e., different grades of concretes, or initially identical, but working with different stress-strain diagrams due to the effect of indirect reinforcement or the effect of confinement, etc.). This methodology is considering the tensile strain softening and tension stiffening of concrete in additio
This thesis aims to study the effect of addition polymer materials on mechanical properties of self-compacting concrete, and also to assess the influence of petroleum products (kerosene and gas oil) on mechanical properties of polymer modified self-compacting concrete (PMSCC) after different exposure periods of (30 ,60 ,90 ,and 180 days).
Two type of curing are used; 28 days in water for SCC and 2 days in water followed 26 days in air for PMSCC.
The test results show that the PMSCC (15% P/C ratio) which is exposed to oil products recorded a lower deterioration in compressive strength's values than reference concrete. The percentages of reduction in compressive strength values of PMSCC (15% P/C ratio) was
... Show MoreSteel-concrete-steel (SCS) structural element solutions are rising due to their advantages over conventional reinforced concrete in terms of cost and strength. The impact of SCS sections with various core materials on the structural performance of composites has not yet been fully explored experimentally, and in this work, both slag and polypropylene fibers were incorporated in producing eco-friendly steel-concrete-steel composite sections. This study examined the ductility, ultimate strength, failure modes, and energy absorption capacities of steel-concrete-steel filled with eco-friendly concrete, enhanced by polypropylene fiber (PPF) to understand its impact on modern structural projects. Eco-friendly concrete was produced by the partial
... Show More