The refractive index sensors based on tapered optical fiber are attractive for many industries due to sensing capability in a variety of application. In this paper, we proposed a refractive index sensor based on multicore fiber (MCF) sandwiched between two standard single mode fibers (SMF). The sensor consisting of three sections, SMF- MCF-SMF is structurally simple and can be easily produced by joining these parts. The MFC contains seven cores and these cores are surrounded by a single cladding. The sensing region is obtained by tapering the MCF section where the evanescent field is generated. The single mode propagating along the SMF is stimulated at the first joint and is coupled to the cladding modes. These modes interfere with the core mode after passing the second joint. The transmission spectrum of the output light at the end of the third section is sensitive to the refractive index (RI) of the environment surrounding the cladding. In this study, the RI sensitivity of the proposed sensor was analyzed numerically and the RI sensing characteristic was investigated for different measurement ranges and different structural configurations. The results show that the refractive index sensitivity is extremely high in the range of about 1.44 to 1.45 RIU. In addition, the developed sensor has many advantages such as compact construction, low cost, small size and easy fabrication. It also has the potential to perform high precision measurements in fields such as biochemistry, health care and biological applications.
Capillary pressure is a significant parameter in characterizing and modeling petroleum reservoirs. However, costly laboratory measurements may not be sufficiently available in some cases. The problem amplifies for carbonate reservoirs because relatively enormous capillary pressure curves are required for reservoir study due to heterogeneity. In this work, the laboratory measurements of capillary pressure and formation resistivity index were correlated as both parameters are functions of saturation. Forty-one core samples from an Iraqi carbonate reservoir were used to develop the correlation according to the hydraulic flow units concept. Flow zone indicator (FZI) and Pore Geometry and Structure (PGS) approaches were used to identify
... Show MoreThis study investigates the effects of Al-Doura oil refinery effluent, in Baghdad city, on the water quality of the Tigris River using the Canadian Water Quality Index (CCME WQI) and Rivers Maintaining System (1967). Water samples were collected monthly from Tigris River at three stations, which are Al-Muthanna Bridge (upstream), Al-Doura Refinery (point source), and Al–Zafaraniya city (downstream) from October 2020 to April 2021. Fourteen water quality parameters were studied, namely pH (6.50-8.10), Water Temperature (WT) (5.00-27.00 °C), Electrical Conductivity (EC) (877.00-1192.00 μs/cm), Dissolved Oxygen (DO) (5.03-7.57 mg/L), Biological Oxygen demand (BOD) (0.53-2.23 mg/L), Total Dissolved S
Asthma and obesity are both a major public health problems affecting large numbers of individuals across the globe. Link between obesity and asthma is now considered as a recognized fact, and many epidemiological studies, found that overweight and obese people had a higher chance of developing asthma, with more severe symptoms. Assessment of the relationship between body mass index and asthma control. A cross-sectional study, that included 100 patients diagnosed with asthma, attending the respiratory disease consultatory unit at Baghdad teaching hospital. Body mass index was calculated by (BMI= weight in Kg/Height in m2), and Asthma control was assessed using asthma control test questionnaire forma. Statistical analysis done using, Test of
... Show MoreThe study aims to build a water quality index that fits the Iraqi aquatic systems and reflects the environmental reality of Iraqi water. The developed Iraqi Water Quality Index (IQWQI) includes physical and chemical components. To build the IQWQI, Delphi method was used to communicate with local and global experts in water quality indices for their opinion regarding the best and most important parameter we can use in building the index and the established weight of each parameter. From the data obtained in this study, 70% were used for building the model and 30% for evaluating the model. Multiple scenarios were applied to the model inputs to study the effects of increasing parameters. The model was built 4 by 4 until it reached 17 parame
... Show MoreThe pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show More