In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.
Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat
... Show MoreThe Iraqi outfit is characterized by special features and identity that are closely related to the traditions, customs, religious and social beliefs and other references of the Iraqi environment and its factors affecting the individual and society. Every place in Iraq has its own uniform, which differs in terms of its artistic, aesthetic and functional components from place to place.
The abaya, especially worn by women, is especially distinct in terms of the design of the uniform, the nature of the cloth made of it, as well as the color of the abaya, which is dominated by black in most designs. The Dar Al-Taros Center and Textile Research initiated the construction of theoretical and practical bases in the design of contemporary
... Show MoreNonlinear time series analysis is one of the most complex problems ; especially the nonlinear autoregressive with exogenous variable (NARX) .Then ; the problem of model identification and the correct orders determination considered the most important problem in the analysis of time series . In this paper , we proposed splines estimation method for model identification , then we used three criterions for the correct orders determination. Where ; proposed method used to estimate the additive splines for model identification , And the rank determination depends on the additive property to avoid the problem of curse dimensionally . The proposed method is one of the nonparametric methods , and the simulation results give a
... Show MoreIn this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.
This study represents an attempt to develop a model that demonstrates the relationship between HRM Practices, Governmental Support and Organizational performance of small businesses. Furthermore, this study assay to unfold the socalled “Black Box” to clarify the ambiguous relationship between HRM practices and organizational performance by considering the pathway of logical sequence influence. The model of this study consists two parts, the first part devoted to examining the causal relationships among HRM practices, employees’ outcomes, and organizational performance. The second part assesses the direct relationship between the governmental support and organizational performance. It is hypothesized that HRM practices positively influ
... Show MoreThe main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreBoth the double-differenced and zero-differenced GNSS positioning strategies have been widely used by the geodesists for different geodetic applications which are demanded for reliable and precise positions. A closer inspection of the requirements of these two GNSS positioning techniques, the zero-differenced positioning, which is known as Precise Point Positioning (PPP), has gained a special importance due to three main reasons. Firstly, the effective applications of PPP for geodetic purposes and precise applications depend entirely on the availability of the precise satellite products which consist of precise satellite orbital elements, precise satellite clock corrections, and Earth orientation parameters. Secondly, th
... Show More<span lang="EN-GB">This paper highlights the barriers that have led to a delay in the implementation of E-Health services in Iraq. A new framework is proposed to improve the E-Health sector using a SECI model which describes how explicit and tacit knowledge is generated, transferred, and recreated in organizations through main stages (socialization, externalization, combination and internalization). Class association rules (CARs) is integrated to mine the SECI model by extracting related rules which correspond to the medical advice. The proposed framework (SECICAR) can be done through a web portal to assemble healthcare professionals, patients in one environment. SECICAR will be applied to the hypertension community to show th
... Show MoreGas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in