Preferred Language
Articles
/
1hgvk5gBVTCNdQwCBL_n
Removal of Dyes from Aqueous Solutions using Non-Thermal Plasma
...Show More Authors

Clarivate Crossref
View Publication
Publication Date
Sat Oct 01 2022
Journal Name
International Journal Of Nanoscience
Preparation and Physical Properties of Mg-Zn Nano-crystal by Laser-induced Plasma
...Show More Authors

To learn how the manner of preparation influences film development, this study examined film expansion under a variety of deposition settings. To learn about the membrane’s properties and to ascertain the optimal pretreatment conditions, which are represented by ambient temperature and pressure, Laser pressure of 2.5[Formula: see text]m bar, the laser energy density of 500[Formula: see text]mJ, distortion ratio ([Formula: see text]) as a function of laser pulse count, all achieved with the double-frequency Nd: YAG laser operating in quality-factor mode at 1064[Formula: see text]nm. MgxZn[Formula: see text] films of thickness [Formula: see text][Formula: see text]nm were deposited on glass substrates at pulse

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Oct 08 2002
Journal Name
Iraqi Journal Of Laser
Cross-focusing Effect of Two Intense Laser Beams on Electron Plasma Wave Excitation
...Show More Authors

This paper presents the effect of relativistic and ponderomotive nonlinearity on cross-focusing of two intense laser beams in a collisionless and unmagnetized plasma. It should be noted here that while considering the self-focusing due to relativistic electron mass variation, the electron ponderomotive density depression in the channel may also be important. Therefore/these two nonlinearties may simultaneously affect the self-focusing process. These nonlinearities depend not only on the intensity of one laser but also on the second laser. Therefore, one laser beam affects the dynamics of the second beam and hence the process of cross-focusing takes place. The electric field amplitude of the excited electron plasma wave (EPW) has been cal

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Spectroscopic study of dielectric barrier discharge argon plasma at different gas flow rates
...Show More Authors

Dielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Electrical glow discharges and plasma parameter of planar sputtering system for silver target
...Show More Authors

DC planar sputtering system is characterized by varying discharge potential of (250-2000 volt) and Argon gas pressures of (3.5×10-2 – 1.5) mbar. The breakdown voltage for silver electrode was studied with a uniform electric field at different discharge distances, as well as plasma parameters. The breakdown voltage is a product of the Argon gas pressure inside the chamber and gab distance between the electrodes, represent as Paschen curve. The Current-voltage characteristics curves indicate that the electrical discharge plasma is working in the abnormal glow region. Plasma parameters were found from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values of the electron temperature an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Conference Of Numerical Analysis And Applied Mathematics Icnaam 2019
Synthesis of nanostructure diamond-like carbon thin films by atmospheric pressure plasma jet
...Show More Authors

In this work, diamond-like carbon (DLC) thin films were prepared from Cyclohexane. Thin films were deposited on quartz substrate by atmospheric pressure Argon plasma jet system. The plasma jet system was applying high voltage sinusoidal waves of frequency 28 kHz and potential difference of 7.5kV peak to peak across the electrodes. The effect of annealing at 400, 500 and 600 °C under vacuum for two hours on optical properties and structural properties of the DLC thin films were investigated. This effect was clarified by X-ray diffraction (XRD), FTIR, UV-Visible absorption, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The X-ray diffraction patterns for the annealing DLC thin films show two broad peaks at 2θ, 26.62° and 51.58

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
Developing a Predictive Model and Multi-Objective Optimization of a Photovoltaic/Thermal System Based on Energy and Exergy Analysis Using Response Surface Methodology
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
A Mathematical Model of a Thermally Activated Roof (TAR) Cooling System Using a Simplified RC-Thermal Model with Time Dependent Supply Water Temperature
...Show More Authors

This paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
Streams and plasma parameters experimental studies in He-CO gas mixtures
...Show More Authors

DC glow discharges were generated between a thin cylindrical anode and a flat cathode, streamers are thought to propagate by photo-ionization; the parameters of photo-ionization depend on the He: CO ratio. Therefore we study streamers in He ( 90%, 80% and 70% ) with (10%, 20% and 30%) CO respectively. The streamer diameter is essentially the change by increase for similar voltage and pressure in all He-CO mixtures.

View Publication Preview PDF
Publication Date
Wed Dec 04 2024
Journal Name
F1000research
Correlation between plasma homocysteine and ischemic heart disease in young Adults
...Show More Authors

Background Cardiovascular disease (CVD) is a leading cause of death worldwide. Ischemic heart disease is a major cause of morbidity and mortality. Lack of blood supply to the brain can cause tissue death if any of the cerebral veins, carotid arteries, or vertebral arteries are blocked. An ischemic stroke describes this type of event. One of the byproducts of methionine metabolism, the demethylation of methionine, is homocysteine, an amino acid that contains sulfur. During myocardial ischemia, the plasma level of homocysteine (Hcy) increases and plays a role in many methylation processes. Hyperhomocysteinemia has only recently been recognized as a major contributor to the increased risk of cardiovascular disease (CVD) owing to its eff

... Show More
View Publication
Crossref
Publication Date
Sat May 25 2024
Journal Name
Optical And Quantum Electronics
Enhancing plasma jet parameters control by external magnetic field strength variation
...Show More Authors

Abstract This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influ

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref