The need to constantly and consistently improve the quality and quantity of the educational system is essential. E-learning has emerged from the rapid cycle of change and the expansion of new technologies. Advances in information technology have increased network bandwidth, data access speed, and reduced data storage costs. In recent years, the implementation of cloud computing in educational settings has garnered the interest of major companies, leading to substantial investments in this area. Cloud computing improves engineering education by providing an environment that can be accessed from anywhere and allowing access to educational resources on demand. Cloud computing is a term used to describe the provision of hosting services on the Internet. It is predicted to be the next generation of information technology architecture and offers great potential to enhance productivity and reduce costs. Cloud service providers offer their processing and memory resources to users. By paying for the use of these resources, users can access them for their calculations and processing anytime and anywhere. Cloud computing provides the ability to increase productivity, save information technology resources, and enhance computing power, converting processing power into a tool with constant access capabilities. The use of cloud computing in a system that supports remote education has its own set of characteristics and requires a unique strategy. Students can access a wide variety of instructional engineering materials at any time and from any location, thanks to cloud computing. Additionally, they can share their materials with other community members. The use of cloud computing in e-learning offers several advantages, such as unlimited computing resources, high scalability, and reduced costs associated with e-learning. An improvement in the quality of teaching and learning is achieved through the use of flexible cloud computing, which offers a variety of resources for educators and students. In light of this, the current research presents cloud computing technology as a suitable and superior option for e-learning systems.
The properties of structural and optical of pure and doped nano titanium dioxide (TiO2) films, prepared using chemical spray pyrolysis (CPS) technique, with different nanosize nickel oxide (NiO) concentrations in the range (3-9)wt% have been studied. X-Ray diffraction (XRD) technique where using to analysis the structure properties of the prepared thin films. The results revealed that the structure properties of TiO2 have polycrystalline structure with anatase phase. The parameters, energy gap, extinction coefficient, refractive index, real and imaginary parts were studied using absorbance and transmittance measurements from a computerized ultraviolet visible spectrophotometer (Shimadzu UV-1601 PC) in the wavelength
... Show MoreIn this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope
This study designed to prepare ultrafine apixaban (APX) o/w nanoemulsion (NE) based gel with droplet size below 50 nm as a good method for transdermal APX delivery without using permeation enhancer, alternatively, the formulation components itself act as permeation enhancer. APX, a potent oral anticoagulant drug that selectively and directly inhibit coagulation factor Xa, was selected as a good candidate for transdermal delivery as it displays poor water solubility (0.028 mg/mL) and low bioavailability (50%). APX-NE gel was prepared using triacetin, triton-x-100 and carbitol as oil phase, surfactant and cosurfactant respectively, while Carbopol 940 used as a gelling agent. Ex vivo permeation of APX-NE gel through human stratum c
... Show MoreBackground: Many structural or functional abnormalities can impair the production of thyroid hormones and cause hypothyroidism.Objectives: to identify the main etiological causes of hypothyroidism among patients visiting Specialized Center for Diabetes and Endocrinology.Methods: This study was conducted in the Specialized Center for Diabetes and Endocrinology on 217 patients with proved hypothyroidism, from 2006 to 2008. Every patient was tested with thyroid function tests, Ultrasound examination, thyroid autoantibodies, fine needle aspiration, radiology of skull, isotopes scan, also checking adrenal and gonadal function. Results: Out of these 217 patients 120 patients have thyroiditis 33 patients had been undergone thyroidectomy. 39 pat
... Show MoreAl-Rustamiyah plant is the oldest and biggest sewage treatment plant in Iraq; it locates in the south of Baghdad city. The plant suffers from serious problems associated with overflow and low capacity. The present work aims to upgrade the heart of biological treatment process through suggesting the use of membrane bioreactor; (MBR). In this work, fouling of membrane during sewage treatment has been analyzed experimentally and theoretically by fouling mechanisms. Aeration has been applied in order to control fouling through producing effective diameters of air bubbles close to the membrane walls. Effect of air flow rate on flux decline was investigated. Hermia's models were used to investigate the fouling mechanisms. The results showed th
... Show More