The need to constantly and consistently improve the quality and quantity of the educational system is essential. E-learning has emerged from the rapid cycle of change and the expansion of new technologies. Advances in information technology have increased network bandwidth, data access speed, and reduced data storage costs. In recent years, the implementation of cloud computing in educational settings has garnered the interest of major companies, leading to substantial investments in this area. Cloud computing improves engineering education by providing an environment that can be accessed from anywhere and allowing access to educational resources on demand. Cloud computing is a term used to describe the provision of hosting services on the Internet. It is predicted to be the next generation of information technology architecture and offers great potential to enhance productivity and reduce costs. Cloud service providers offer their processing and memory resources to users. By paying for the use of these resources, users can access them for their calculations and processing anytime and anywhere. Cloud computing provides the ability to increase productivity, save information technology resources, and enhance computing power, converting processing power into a tool with constant access capabilities. The use of cloud computing in a system that supports remote education has its own set of characteristics and requires a unique strategy. Students can access a wide variety of instructional engineering materials at any time and from any location, thanks to cloud computing. Additionally, they can share their materials with other community members. The use of cloud computing in e-learning offers several advantages, such as unlimited computing resources, high scalability, and reduced costs associated with e-learning. An improvement in the quality of teaching and learning is achieved through the use of flexible cloud computing, which offers a variety of resources for educators and students. In light of this, the current research presents cloud computing technology as a suitable and superior option for e-learning systems.
In recent years, nano-modified asphalt has gained significant attraction from researchers in the design of asphalt pavement fields. The recently discovered Titanium dioxide nanoparticles (TiO2) are among the most exciting and promising nanomaterials. This study examines the effect of 1, 3, 5, and 7% of nano-TiO2 by weight of asphalt on some of its rheological and hardened properties. The experimental study included physical and rheological properties. The asphalt penetration, softening point, ductility, and rotational viscometer tests indicate that 5% nano-TiO2 is the ideal amount to be added to bitumen as a modifier. The
The aim of this work was directed to measure the cosmic ray (CR)
flux and the background (BG) absorbed dose rate for districts of
Baghdad city. The maximum values of CR flux was 2.01
(particle/cm2.s) registered for several Baghdad districts and the
minimum was 0.403 (particle/cm2.s) belonging to Al-kadhimiya
district, whereas the overall average value was 1.24 (particle/cm2.s).
The BG measurements showed that the maximum absorbed dose was
25 nSv/h belonging to Noab AL-Dhbat district and the minimum
absorbed was 19.01 nSv/h observed in Al-Ghadeer district, while
the overall average was 22.56 nSv/h, and this value is small than the
Iraqi permissible limit, which is restricted by Iraqi Center of
Radiation Pr
This research investigates the pre- and post-cracking resistance of steel fiber-reinforced concrete specimens with Glass Fiber Reinforced Polymer (GFRP) bars subjected to flexural loading. The purpose is to modify the ductility and cracking resistance of GFRP-reinforced beams, which are prone to early cracking and excessive deflections instigated by the low modulus of elasticity of GFRP. Six self-compacting concrete specimens (1500×240×200 mm), incorporating steel fibers of two lengths (25 mm and 40 mm) with varying distribution depths, were tested to assess their structural performance. The results indicate significant enhancements in cracking resistance, stiffness, energy absorption, ductility, and flexural strength. Tested beam
... Show MoreBackground: The effect of garlic extracton fungal
growth and keratinolytic activity was studied in
Trichophytonmentagrophytes as one of the major
etiologic agents of human and animal dermatophytosis
in Baghdad and other parts of the World.
Objective: To investigated an alternative
antidermatophyte with minimum side effects which is
plant based and biodegradable natural product
Methods: Culture conditions for 30 isolates of T.
mentagrophytes isolated from human dermatophytosis
from both sexes with ages of 5-63 years in Central
Medical city for the period July 2009 to October 2009
were cultured on specific solid medium.
Results: The aqueous extract of garlic at various
concentrations inhibited the
Among the undesirable effects of soil compaction is a measurable reduction in plant growth and crop yield. The prevailing belief is that compacted tillage pans are caused by repetitive farming practices, heavy tractors, tillage tools, and field traffic. This experiment was conducted to determine and map the hardpan layers across an agricultural field through advanced technologies of precision agriculture. These valuable techniques such as data logger, yield map, and data analysis of performance indicators were linked with accurate global positioning systems (GPS) datasets. These important technologies provided the farmers and helped them to identify and manage areas of the fields with higher compacted layers. Three ground speeds 4.3
... Show MoreObjective(s): This study aims to assess health related quality of life among Iraqi patients with chronic viral hepatitis
B and C also to find out the relationship between health related quality of life and patients demographic
characteristic and to design a new measurement scale for assessing QoL among viral hepatitis B and C patients
which can be suitable to be adopted for Iraqi patients
Methodology: A descriptive quantitative study is carried out at Gastroenterology and Hepatology Teaching
Hospital from February, 1st, 2011 to August 30th 2011, Anon probability (purposive sample) of (100) chronic viral
hepatitis B and C persons , who were clients of Gastroenterology and Hepatology Teaching Hospital / outpatient
clin
Background: Glass ionomers have good biocompatibility and the ability to adhere to both enamel and dentin. However, they have certain demerits, mainly low tensile and compressive strengths. Therefore, this study was done to assess consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite. Materials and Methods: In this study hydroxyapatite materials were added to glass ionomer cement at different ratios, 10%, 15%, 20%, 25% and 30% (by weight). The standard consistency test described in America dental association (ADA) specification No. 8 was used, so that all new base materials could be conveniently mixed and the results would be of comparable value and the compressive strength test described by
... Show MoreCu X Zn1-XO films with different x content have been prepared by
pulse laser deposition technique at room temperatures (RT) and
different annealing temperatures (373 and 473) K. The effect of x
content of Cu (0, 0.2, 0.4, 0.6, 0.8) wt.% on morphology and
electrical properties of CuXZn1-XO thin films have been studied.
AFM measurements showed that the average grain size values for
CuXZn1-xO thin films at RT and different annealing temperatures
(373, 473) K decreases, while the average Roughness values increase
with increasing x content. The D.C conductivity for all films
increases as the x content increase and decreases with increasing the
annealing temperatures. Hall measurements showed that there are
two