Diamond-like carbon, amorphous hydrogenated films forms of carbon, were pretreated from cyclohexane (C6H12) liquid using plasma jet which operates with alternating voltage 7.5kv and frequency 28kHz. The plasma Separates molecules of cyclohexane and Transform it into carbon nanoparticles. The effect of argon flow rate (0.5, 1 and 1.5 L/min) on the optical and chemical bonding properties of the films were investigated. These films were characterized by UV-Visible spectrophotometer, X-ray diffractometer (XRD) Raman spectroscopy and scanning electron microscopy (SEM). The main absorption appears around 296, 299 and 309nm at the three flow rate of argon gas. The value of the optical energy gap is 3.37, 3.55 and 3.68 eV at a different flow rate of argon gas. For XRD analysis, The presence of diamond peaks and graphite peaks in the x-ray spectrum for these films Indicates that there is an occurrence of local ordered sp3 and sp2 for carbon domains and graphite respectively. Raman spectroscopy analysis revealed two broad bands D band and G band. The upshift of D band of diamond and downshift of the G band of graphite with is indicative of the presence of DLC films.
A Ligand (ECA) methyl 2-((1-cyano-2-ethoxy-2-oxoethyl)diazenyl)benzoate with metals of (Co2+, Ni2+, Cu2+) were prepared and characterization using H-NMR, atomic absorption spectroscopy, ultra violet (UV) visible, magnetic moments measurements, bioactivity, and Molar conductivity measurements in soluble ethanol. Complexes have been prepared using a general formula which was suggested as [M (ECA)2] Cl2, where M = (Cobalt(II), Nickel(II) and Copper(II), the geometry shape of the complexes is octahedral.
Metal complexes of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), Zn(II), Hg(II), Pd(II), and Pt(II) with Schiff base ligand (LH) derived from 2,5-dichloroaniline and 2-hydroxy-5-metheylbenzalaldehyde were synthesized and characterized using a variety of spectrophotometric techniques The findings of the spectroscopic analysis indicated that (LH) behaved as a binary coordinating agent to the metal ion by the N and O atoms, and the geometry shape of the complexes was octahedral, with the exception of the Pd and Pt complexes, which had a square planar geometry. Using the DPPH radical scavenging method, we investigated the antimicrobial activity of the compound against Staphylococcus aureus and Escherichia coli, as well as the antifungal activity of t
... Show MoreNew Fourteen compounds were synthesized in four steps. The first step included synthesis of 2-biphenyl fused ring of imidazo(1,2- a)pyrimidine from the reaction of 2-aminopyrimidine and biphenyl phenacyl bromide . The second step was introduced aldehyde group from the reaction of 2-biphenyl fused rings of imidazo(1,2-a)pyrimidine with POCl3 in presence of DMF and CHCl3. 3-Carbaladehyde derivatives of fused imidazo/pyrimidine was reacted with different aromatic amines to afford new Schiff bases. These new 3- imines derivatives was reduced by using sodiumborohydride to yield another new 3-aminomethyl-2-biphenyl imidazo (1,2-a)pyrimidine derivatives in moderate yield .Some new prepared compounds were identified by melting point, FT- IR , 13C-
... Show MoreThe mixed ligand complexes of Schiff base ligand (Z)-2-(((4-bromo-2-methylphenyl) imino) methyl)-4-methylphenol (L) with some metals ion (II); Mn(1), Co(2), Ni(3), Cu(4), Zn(5) Cd(6) and Hg(7) and 1,10-Phenanthroline (phen) were Synthesis and characterized by the mass and 1HNMR spectrometry (ligand Schiff base), the FTIR, UV-visible and the flame atomic absorption (A.A) spectrum, the C.H.N analysis and the chlorine content, in addition to measuring the magnetic sensitivity of the complexes. All the complexes had octahedral geometry. The bioactivity activity for compounds against; Rhizopodium, Staphylococcus aureus and Escherichia coli, the compounds showed different efficacy towards these microorganisms
This study was conducted to isolate and identify killer yeast Hanseniaspora uvarum from dates vinegar and measurement the ability of this yeast to produce killer toxin. The antimicrobial activity of the concentrated supernatant containing partially purified concentrated killer toxin was also detected against several pathogenic bacteria and yeast species, which includes two types of yeast Rhodotorula mucilaginosa and Candida tropicalis and four human pathogenic bacteria Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeurginosa. In addition, the antagonistic activity of examined yeast have been studied toward four types of fungi, where two are pathogenic
... Show MoreTransition metal complexes of Co(II), Ni(II), Cu(II), and Zn(II) with 2-(4-antipyrine azo)-4-nitroaniline derived from 4-aminoantipyrine and 4-nitroaniline were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR, UV-Vis and 1HNMR, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiometry of the complexes has been found to be 1:2 (metal:ligand). On the basis of physicochemical data octa
... Show MoreABSTRACT : A new ligand [ 2- (3-acetylthioureido)-3-phenylpropanoic acid (APA) is synthesized by reaction of acetyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(APA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper complex is has square planer geometry.
The Schiff base (E)-2-(((2-(1H-benzo[d]imidazol-2-yl) phenyl) imino) methyl)-4-methylphenol (Lb) ligand with some metals(II) ion such as; Co, Cu, Cd, and Hg, were synthesis and characterized by the mass and 1 HNMR spectrometry for ligand Schiff base, the fourier-transform infrared spectroscop (FTIR), UV- visible and the flame atomic absorption (AA) spectrum, the CHN analysis, and the chlorine content, in addition to measuring the magnetic sensitivity of the complexes. All the complexes had octahedral geometry. The bioactivity activity for compounds against; Rhizopodium, Staphylococcus aureus, and Escherichia coli showed different efficacy towards these microorganisms
Aim: The present study aims to improve the poor water solubility of zaltoprofen which is a non-steroidal anti-inflammatory drug (NSAIDs) with a potent analgesic effect using solid dispersion then formulate it as a hollow type suppository to be more convenient for geriatric patients. Materials and Method: Zaltoprofen solid dispersions were prepared by solvent evaporation technique in different zaltoprofen: Soluplus® ratios. Results: Among the formulations tested, zaltoprofen solid dispersion preparation using 1:5 (zaltoprofen: Soluplus®) ratio showed the highest solubility and selected for further investigation. Solid dispersion characterization was evaluated by differential scanning calorimetry (DSC), X-ray diffraction study (XRD) and Fou
... Show MoreNew schiff bases series (VIII) a-e and 1,3-thiazolidin-4-one derivatives (IX) a-e containing the 1,2,4-triazole and 1,3,4-thiazazole rings were synthesized and screening their biological activities. These compounds were identified via Fourier transform infrared (FT-IR) spectra, some via Proton nuclear magnetic resonance (1H-NMR) and mass spectra. The biological results indicated that all of these compounds did not reveal antibacterial effectiveness against (Escherichia coli and Klebsiella species) (G-). Some of these compounds showed moderate antibacterial activity against (Staphylococcus aureus, and Staphylococcus epidermidis) (G+), and all compounds exhibited moderate activity against Candida albicans.