The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.
A calamitic symmetric liquid crystalline consisting of an azo group containing 5H-Thiazolo[3,4-b][1,3,4]thiadiazole moiety compound[III] was synthesized via sequence reactions starting from reaction terephthaldehyde with mercaptoacetic acid and thiosemicarbazide in the presence of concentrated sulfuric acid to synthesized 5,5'-(1,4-phenylene)bis(5Hthiazolo[4,3-b][1,3,4]thiadiazol-2-amine)[I] then the azo compound [II] synthesized by coupling between diazonium salt of the compound [I] with phenol at (0-4) ̊C., after that the compound [III] was synthesized by the reaction of the compound [II] with methyl bromide in alkaline media. The compounds are characterized by melting points, FTIR and 1HNMR spectroscopy. The mesomorphic behavior was stu
... Show MoreA recently reported Nile red (NR) dye conjugated with benzothiadiazole species paves the way for the development of novel organic-based sensitizers used in solar cells whose structures are susceptible to modifications. Thus, six novel NR structures were derived from two previously developed structures in laboratories. In this study, density functional theory (DFT) calculations and time-dependent DFT (TD-DFT) were used to determine the optoelectronic properties of the NR-derived moieties such as absorption spectra. Various linkers were investigated in an attempt to understand the impact of π-linkers on the optoelectronic properties. According to the findings, the presence of furan species led to the planarity of the molecule and a reduction
... Show MoreThe parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.
Background Rectal cancer is one of the most common malignant tumors of gastrointestinal tract. Combining chemotherapy with radiotherapy has a sound effect on its management.
Objectives Assessment the patterns of characterizations of rectal cancer. Evaluation of the efficacy, and long-term survival of pre-/ postoperative chemoradiation. Collecting all eligible evidence articles and summarize the results.
Methods By this systematic review and meta-analysis study, we include data of chemoradiation of rectal cancer articles from 2015 until 2019. The research was carried out at Baghdad Medical City oncology centers. Accordance with the
Multi-carrier direct sequence code division multiple access (MC-DS-CDMA) has emerged recently as a promising candidate for the next generation broadband mobile networks. Multipath fading channels have a severe effect on the performance of wireless communication systems even those systems that exhibit efficient bandwidth, like orthogonal frequency division multiplexing (OFDM) and MC-DS-CDMA; there is always a need for developments in the realisation of these systems as well as efficient channel estimation and equalisation methods to enable these systems to reach their maximum performance. A novel MC-DS-CDMA transceiver based on the Radon-based OFDM, which was recently proposed as a new technique in the realisation of OFDM systems, will be us
... Show More