Preferred Language
Articles
/
1hctP48BVTCNdQwCxmVA
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.

Publication Date
Tue Jun 30 2015
Journal Name
International Journal Of Computer Techniques
Multifractal-Based Features for Medical Images Classification
...Show More Authors

This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4

... Show More
Preview PDF
Publication Date
Tue Oct 01 2024
Journal Name
Separation And Purification Technology
A comprehensive review on the use of Ti3C2Tx MXene in membrane-based water treatment
...Show More Authors

View Publication
Scopus (17)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
A Systematic Review of Brain-Computer Interface Based EEG
...Show More Authors

The futuristic age requires progress in handwork or even sub-machine dependency and Brain-Computer Interface (BCI) provides the necessary BCI procession. As the article suggests, it is a pathway between the signals created by a human brain thinking and the computer, which can translate the signal transmitted into action. BCI-processed brain activity is typically measured using EEG. Throughout this article, further intend to provide an available and up-to-date review of EEG-based BCI, concentrating on its technical aspects. In specific, we present several essential neuroscience backgrounds that describe well how to build an EEG-based BCI, including evaluating which signal processing, software, and hardware techniques to use. Individu

... Show More
View Publication
Crossref (8)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Cogent Engineering
Content-based image retrieval: A review of recent trends
...Show More Authors

View Publication
Scopus (109)
Crossref (98)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Therapeutic Delivery
Particles-based Medicated Wound Dressings: A Comprehensive Review
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
مجلة ميسان للدراسات الأكاديمية
Adhesion Of 3D Printed Acrylic Resin With Silicone Soft Liner After Sandblast Surface Treatment:, A Review Of Literature
...Show More Authors

View Publication
Crossref
Publication Date
Sat Feb 25 2017
Journal Name
International Journal On Advanced Science, Engineering And Information Technology
A Novel DNA Sequence Approach for Network Intrusion Detection System Based on Cryptography Encoding Method
...Show More Authors

A novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results sh

... Show More
View Publication
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Mon May 15 2017
Journal Name
International Journal Of Image And Data Fusion
Image edge detection operators based on orthogonal polynomials
...Show More Authors

View Publication
Scopus (32)
Crossref (10)
Scopus Crossref
Publication Date
Tue Jan 31 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on intrusion detection system based on analysis concept drift: Status and future directions
...Show More Authors

Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor

... Show More
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Dental Research Journal
Impact of a mixture of nanofiller and intrinsic pigment on tear strength and hardness of two types of maxillofacial silicone elastomers
...Show More Authors

Background: The ideal maxillofacial prosthesis should have fine and thin boundaries that bindwith the surrounding facial structures and possess high tear strength.This study aims to determinethe best percentages of nanofiller (TiO2) and intrinsic pigment (silicone functional intrinsic) thatcould be mixed in as additives to improve the tear strength of Cosmesil M511 andVST50F siliconeelastomers with the least effect on their hardness.Materials and Methods: In this in vitro experimental study, a total of 80 samples, 40 for eachelastomer, were fabricated. Each elastomer sample was split into two equal groups to test for tearstrength and Shore A hardness. Each group consisted of 20 samples, including 10 control sampleswithout additives and 10 e

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref