Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use machine learning algorithms to determine the above relationship. Algorithms include multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), cubist, random forest (RF), and artificial neural networks (ANN). Machine learning made it possible to predict soil penetration resistance from huge sets of environmental data obtained from onboard sensors on satellites and other sources to produce digital soil maps based on classification and slope, but whose output must be verified if they are to be trusted. This review presents soil penetration resistance measurement systems, new technological developments in measurement systems, and the contribution of precision agriculture techniques and machine learning algorithms to soil penetration resistance measurement and prediction.
sanaa tareq, Baghdad Science Journal, - Cited by 1
Some physical properties enthalpy (?H), entropy (?s), free energy (?G),capacities(?cp?) and Pka values) for valine in dimethyl foramideover the temperature range 293.15-318.15K, were determined by direct conductance measurements. The acid dissociation at six temperature was examined at solvent composition x2) involving 0.141 of dimethyl foramide . As results, calculated values have been used to determine the dissociation constant and the associated thermodynamic function for the valine in the solvent mixture over temperatures in the range 293.15-318.15 k. The Pka1, and Pka2 were increased with increasing temperature.
This paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T
SKF Dr. Abbas S. Alwan, Dhurgham I. Khudher, INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, 2015
The study analyzed the current situation of public hospitals in the capital of Baghdad exclusively and diagnosed the resources available; especially after the high demand for these hospitals as a result of the citizen’s need to review the hospital to take care of them, especially after the Corona pandemic. Eight major hospitals in Baghdad were selected to determine the current reality of providing fire safety tools or equipment and what are the preventive measures needed to reduce it. The results after practical study showed many defects and weaknesses in the current situation due to their reliance on the traditional management to manage and provide all preventive measures and safet
The aim of the present research is to illustrate γ-ray levels emitting from soil and bitumen producing from 238U, 232Th, and 40K along Abu-Jir Fault Zone. in the area extended from Al-Marj valley to Abu-Jir village using scintillometer device. Such study is important in environmental assessment to buildup data base about radioactivity. The concentration of natural radionuclides in the study area was determined to be occurring mostly in the clay minerals and organic matter. A high purity germanium spectrometer was used to detect the activity of these elements which ranged between 00.6±18.1- 1526±102, 0- 8.4±1.4, and 70.1±10.9- 328.2±73 in soil, and 28.2±5.6- 94±22.1, 0- 2.2±0.5, and 38.4±7.9- 70.1±10.9 in bitumen for 226Ra
... Show MoreEmissions of particulate matter from nanopapers as well as inks and organic solvents during the printing operationand copying machines constitute a threat to human health, especially with long time exposure in closed working environments. The present study was conducted in some printing houses and copying centers of Baghdad city during February and April .The studyproved the occurrence of an air pollution problem concerning lead and zinc contents in all the study sites. The levels of Pb, Zn and Cu were collected by low volume sampler from the air of the study sites then filter papers digested and determined the heavy metals by flame atomic spectrophotometer. Particulate matter was measured by Aerocet, Microtector meter device was use
... Show MoreThis paper deals with calculate stresses in Knee-Ankle-Foot-Orthosis as a result of the effect vibration during gait cycle for patient wearing KAFO .Experimental part included measurement interface pressure between KAFO and leg due to action muscles and body weigh on Orthosis. also measurement acceleration result from motion of defected leg by accelerometer .Results of Experimental part used input in theoretical part so as to calculate stresses result from applying pressure and acceleration on KAFO by engineering analysis program ANSYS 14.Resultes show stresses values in upper KAFO greater than lower KAFO that is back to muscles more effective in thigh part lead to recoding pressure higher than pressure in shank part.
Equilibrium and rate of mixing of free flowing solid materials are found using gas fluidized bed. The solid materials were sand (size 0.7 mm), sugar (size0.7 mm) and 15% cast iron used as a tracer. The fluidizing gas was air with velocity ranged from 0.45-0.65 m/s while the mixing time was up to 10 minutes. The mixing index for each experiment was calculated by averaging the results of 10 samples taken from different radial and axial positions in fluidized QVF column 150 mm ID and 900 mm height.
The experimental results were used in solving a mathematical model of mixing rate and mixing index at an equilibrium proposed by Rose. The results show that mixing index increases with inc
... Show More