Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use machine learning algorithms to determine the above relationship. Algorithms include multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), cubist, random forest (RF), and artificial neural networks (ANN). Machine learning made it possible to predict soil penetration resistance from huge sets of environmental data obtained from onboard sensors on satellites and other sources to produce digital soil maps based on classification and slope, but whose output must be verified if they are to be trusted. This review presents soil penetration resistance measurement systems, new technological developments in measurement systems, and the contribution of precision agriculture techniques and machine learning algorithms to soil penetration resistance measurement and prediction.
This work investigates the impacts of eccentric-inclined load on ring footing performance resting on treated and untreated weak sandy soil, and due to the reduction in the footing carrying capacity due to the combinations of eccentrically-inclined load, the geogrid was used as reinforcement material. Ring radius ratio and reinforcement depth ratio parameters were investigated. Test outcomes showed that the carrying capacity of the footing decreases with the increment in the eccentric-inclined load and footing radius ratio. Furthermore, footing tilt and horizontal displacement increase with increasing the eccentricity and inclination angle, respectively. At the same time, the increment in the horizontal displacement due t
... Show MoreIn this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe
... Show More
The process of soil classification in Iraq for industrial purposes is important topics that need to be extensive and specialized studies. In order for the advancement of reality service and industrial in our dear country, that a lot of scientific research touched upon the soil classification in the agricultural, commercial and other fields. No source and research can be found that touched upon the classification of land for industrial purposes directly. In this research specialized programs have been used such as geographic information system software The geographical information system permits the study of local distribution of phenomena, activities and the aims that can be determined in the loca
Anthropogenic activities cause soil pollution with different serious pollutants, such as polycyclic aromatic hydrocarbon (PAHs) compounds. This study assessed the contamination of PAHs in soil samples collected from 30 sites divided into eight groups (residential areas, oil areas, agricultural areas, roads, petrol stations, power plants, public parks and electrical generators) in Basrah city-Iraq during 2019-2020. The soil characteristics including (moisture, pH, EC and TOC) were measured. Results showed the following ranges (soil moisture (0.03-0.18%),pH (6.90-8.16), EC (2.48-104.80) mS/cm and TOC (9.90-20.50%)). Gas Chromatography (GC) was used to measure PAHs in extracted soil samples. The total PAH range (499.96 - 5864.86) ng/g dr
... Show MoreAn experiment was carried out evaluate the performance of RAU combined equipment under three levels of practical speed, (V1) 4.06 km. h-1, (V2) 4.43 km. hr-1 and (V3) 5.76 km. hr-1, and three levels of depth with 10,20and 30 cm. It is denoted by D1, D2, D3 respectively. A split plot design was used within the RCBD design with three replications. The experiment results showed that the first practical speed 4.06 km.hr-1 achieved the lowest slippage percentage from 9.61%, lowest traction power 14.65hp, lowest soil penetration resistance to1.34 kg.cm-2, and the highest total operating
Patch in transdermal drug delivery(TDDS) used to overcome the hypodermic drawback, but these patch also have absorption limitation for hydrophilic and macromolecule like peptide and DNA. So that micronized projection have the ability for skin penetration developed named as microneedle. Microneedle drug delivery system is a novel drug delivery to overcome the limitation of TDDS like skin barrier restriction for large molecule. Microneedle patch can penetrate through skin subcutaneous into epidermis, avoiding nerve fiber and blood vessel contact. There are many type of microneedle patch like solid, polymer, hallow, hydrogel forming microneedle and dissolving microneedle with different method of microfabrication
Traction force and power requirement when performing primary tillage occupy the minds of almost farmers, this field research had aim to determine and calculate the pulling force of the most commonly used moldboard and chisel plows, the research conducted in silt clay loam for chisel and moldboard plows as the main factor, two depths of tillage 18 and 25 cm as a second factor and three speeds of tractor 2.55, 4.30 and 6.15 km.h-1 as a third factor. Moldboard plow recorded least traction force 7.550 kN, drawbar power 11.583 hp, power losses due to slippage 1.088 hp, power on the rear axle of the tractor 15.770 hp and brake horse power 17.495 hp. Chisel plow recorded best traction efficiency 76.217 % and total traction efficiency 68.659 %. Dep
... Show MoreNAA Mustafa, University of Sulaimani, Ms. c Thesis, 2010 - Cited by 4
Automation is one of the key systems in modern agriculture, providing potential solutions to the challenges related to the growing world population, demographic shifts, and economic situation. The present article aims to highlight the importance of precision agriculture (PA) and smart agriculture (SA) in increasing agricultural production and the importance of environmental protection in increasing production and reducing traditional production. For this purpose, different types of automation systems in the field of agricultural operations are discussed, as well as smart agriculture technologies including the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), big data analysis, in addition to agricultural robots,
... Show MoreThis field experiment, was conducted to investigate a comparison of two methods for harvesting potatoes: mechanical and handy when using moldboard and chisel plow for primary tillage and three different distances for planting tubers in the rows 15, 25, and 35 cm in silt clay loam soil south of Baghdad. The factorial experiment followed a randomized complete block design with three replications using L.S.D. 5 % and 1 %. Mechanical harvest recorded the best valid potato tubers at 88.78 %, marketable yield of 31.74 ton. ha-1, efficiency lifted 95.68 %, tubers damage index 28.41, speeding up the harvesting process and reducing time and effort. Handy harvest gave the least damage to potato tubers, 6.02 %, and unlifted potato tubers, 4.32 %. Howe
... Show More