ZnS:MnP2+P nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:MnP 2+P quantum dots were zinc acetate as zinc source, thioacetamide as a sulfur source, manganese chloride as manganese source (R & M Chemical) and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:MnP 2+P with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM). The composition of the samples is analysed by EDS. UV-Visible absorption spectroscopy analysis shows that the absorption peak of the as-prepared ZnS sample (310 nm) displays a blue-shift comparing to the bulk ZnS (345 nm).
The present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. The photoelectrochemical response of TNTAs was evaluated
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. T
... Show MoreThis study discussed the effects of doping with silver (Ag) on the optical and structural properties of
CdO nanoparticles at different concentrations 0, 1, 2, 3, 4, 5 wt% prepared by the precipitation method. The
materials were annealed at 550˚C for 1 h. The structural, topographical, and optical properties were
diagnosed by X-ray diffraction analysis, atomic force instrument, and visible and ultraviolet spectrometers.
The results show that the average diameter of the grains depends on the percentage of added silver to the
material, as the diameter decreased from 88.8 to 59.7 nm, and it was found that the roughness increased from
5.56 to 26.5. When studying the optical properties, it was noted that th
In this research, A thin film of Rhodamine B dye and TiO2 Nanoparticles doped in PMMA Polymer has been prepared by a casting method. The sample was spectrum absorption by UV-Vis. The nonlinear optical properties were measured by Z- scan technique using Nd:YAG laser with (1064 nm) wavelength. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) were estimated for the thin film for different energies of the laser, n2 and β were decreased with increasing intensity of incident laser beam. Also, the type of β was two-photon absorption and n2 negative nonlinear reflective.
In this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are
... Show MoreCdSe alloy has been prepared successfully from its high purity elements. Thin films of this alloy with different thicknesses (300,700)nm have been grown on glass substrates at room temperature under very low pressure (10-5)Torr with rate of deposition (1.7)nm/sec by thermal evaporation technique, after that these thin films have been heat treated under low pressure (10-2)Torr at (473,673)K for one hour. X-ray patterns showed that both CdSe alloy and thin films are polycrystalline and have the hexagonal structure with preferential orientation in the [100] and [002] direction respectively. The optical measurements indicated that CdSe thin films have allowed direct optical energy band gap, and it increases from (1.77- 1.84) eV and from
... Show MoreNanoparticles of Pb1-xCdxS within the composition of 0≤x≤1 were prepared from the reaction of aqueous solution of cadmium acetate, lead acetate, thiourea, and NaOH by chemical co-precipitation. The prepared samples were characterized by UV-Vis spectroscopy(in the range 300-1100nm) to study the optical properties, AFM and SEM to check the surface morphology(Roughness average and shape) and the particle size. XRD technique was used to determine the crystalline structure, XRD technique was used to determine the purity of the phase and the crystalline structure, The crystalline size average of the nanoparticles have been found to be 20.7, 15.48, 11.9, 11.8, and 13.65 nm for PbS, Pb0.75Cd0.25S,
... Show MoreAg2O (Silver Oxide) is an important p-type (in chasm to most oxides which were n-type), with a high conductivity semiconductor. From the optical absorbance data, the energy gap value of the Ag2O thin films was 1.93 eV, where this value substantially depends on the production method, vacuum evaporation of silver, and optical properties of Ag2O thin films are also affected by the precipitation conditions. The n-type and p-type silicon substrates were used with porous silicon wafers to precipitate ±125 nm, as thick Ag2O thin film by thermal evaporation techniques in vacuum and via rapid thermal oxidation of 400oC and oxidation time 95 s, then characterized by measurement of
... Show MoreGas sensors are essential for detecting noxious gases that have a detrimental effect on people's health and welfare. Carbon quantum dots (CQDs) are the fundamental component of gas detectors. CQDs and graphene (Gr) were prepared using the electrochemical method. The gas sensitivity of these materials was evaluated at different temperatures (150, 200, 250 °C) to assess their effectiveness. Subsequently, experiments were conducted at different temperatures to ascertain that the combination of CQDs and Gr, with various percentages of Gr and CQDs, exhibited superior gas sensitization properties compared to CQDs alone. This was evaluated based on criteria such as sensitivity, recovery time, and reaction time. Interestingly, the combination was
... Show More