Many experiments were achieved to determine the allelopathic potential of the plant Myrtle parts in which it may affects other plants, like: volatile substances which released from the Myrtle leaves , and its effect examined on the germination (GE) and growth (GR) of the selected crops ; Chickpea ( C ) , Wheat(W) , and Lentil (L)., the aqueous extract of the leaf and the root of the plant examined to test its effect on the (GE) and (GR) of the selected crops ; (C) , (W) , and (L)., also plant residue of (M) and its effect tested on the (GE) and (GR) of the selected crops ; ( C ) , (W) , and (L) . Experiments proceeded on Spring 2007 in the greenhouse conditions , and main results which found were that; the effect of the volatile s
... Show MoreStarting from bis (4,4'-diamino phenoxy) ethan(1), a variety of phenolicschiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis, some derivatives evaluated by thermal analysis (TGA).
Iron oxide(Fe3O4) nanoparticles of different sizes and shapes were synthesized by solve-hydrothermal reaction assisted by microwave irradiation using ferrous ammonium sulfate as a metal precursor, oleic acid as dispersing agent, ethanol as reducing agent and NaOH as precipitating agent at pH=12. The synthesized Fe3O4 nano particles were characterized by X-ray diffraction (XRD), FTIR and thermal analysis TG-DTG. Sizes and shapes of Fe3O4 nanoparticles were characterized by Scanning Electron Microscopy (SEM), and atomic force microscopy (AFM).
The polymeric complexes were obtained from the reaction of polymeric Schiff base.N-crotonyl-2-hydroxyphenylazomethine (HL), with divalent metals Pt (II), Cr (II). The modes of bonding and overall geometry of the complexes were determine through spectroscopic methods and compared with that reported from analogous monomeric ligand. This study revealed square planer geometry around the metal center for [Pt(L)Cl] and distorted octahedral geometry for Cr complex [Cr(L)Cl(H2O)2].