In this paper,we focus on the investigated and studied of transition rate in metal/organic semiconductor interface due to quantum postulate and continuum transition theory. A theoretical model has been used to estimate the transition rate cross the interface through estimation many parameters such that ;transition energy ,driving electronic energy U(eV) ,Potential barrier ,electronic coupling ,semiconductor volume ,density ,metal work function ,electronic affinity and temperature T. The transition energy is critical facter of charge transfer through the interfaces of metal organic films device and itscontrol of charge injection and transport cross interface. However,the potential at interface is dependents on the physical properties of two materials and indicate to the nature of electron transport through system. We can demonstrate barrier height variations as a function of work function and electron affinity of a metal and semiconductor respectively. The flow charges of transfer indicate to the electrical properties of metallic-organic semiconductor devices and this model make us to election the material to use in the electronic devices.
The present work includes the preparation and characterization of{Co(II) , Ni(II), Pd(II), Fe(III) , Ru(III),Rh(III), Os(III) , Ir(III) , Pt(IV) and VO(IV)}complexes of a new ligand 4-[(1-phenyl-2,3-dimethyl-3-pyrozoline-5-one)azo]-N,N-dimethylanline (PAD). The product (PAD) was isolated,studies and characterized by phsical measurements,i.e., (FT-IR), (UV) Spectroscopy and elemental analysis(C.H.N). The prepared complexes were identified and their structural geometric were suggested in solid state by using flame atomic absorption, elemental analysis(C.H.N), (FT-IR) and (UV-Vis) Spectroscopy, as well as magnetic susceptibility and conductivity measurements . The study of the nature of the complexes formed in( ethanolic solution) following t
... Show MoreIn the present work, leaching process studiedusing organic acids (acetic acid and lactic acid) to extract phosphate from the Iraqi Akashat phosphate ore by separation of calcareous materials (mainly calcite). This approach characterized by energy conservation, environmental enhancement by recovery of calcite as calcium sulfate (gypsum), keeping the physical and chemical properties of apatite. Samples were analyzed using X-ray diffraction and FTIR spectrophotometer. From the obtained experimental data it was found that using the two organic acids yields closed purity values of the produced apatite at the optimum conditions, while at different acid concentrations, it was found that the efficiency of acetic acid is higher at the low acid co
... Show MoreThis work involves hard photon rate production from quark -gluon plasma QGP interaction in heavy ion collision. Using a quantum chromodynamic model to investigate and calculation of photons rate in 𝑐𝑔 → 𝑠𝑔𝛾 system due to strength coupling, photons rate, temperature of system, flavor number and critical. The photons rate production computed using the perturbative strength models for QGP interactions. The strength coupling was function of temperature of system, flavor number and critical temperature. Its influenced by force with temperature of system, its increased with decreased the temperature and vice versa. The strength coupling has used to examine the confinement and deconfinement of quarks in QGP properties and inf
... Show MoreThis research is devoted to study the effect of different in weight percentage of Sio2 particles and glass fibers (5, 10, 15, 20) wt. % on the wear rate epoxy resin. The results show that the value of hardness increase with the increase for the weight percentage of reinforcing particles and fibers, while the wear rate decrease with the increase the load level of the reinforcing particles and fibers . The largest value of the hardness, and the lowest value of the wear rate for epoxy reinforced with 20% of SiO2, the wear rate increase in general with increasing the applied load.
A series of metal ion complexes of some divalent transition metal ions having the general composition [ML2Cl2]nH2O with 2-(benzo[d]thiazol-2-ylamino)-2- (5-chloro-2-hydroxy phenyl) acetonitrile ligand has been prepared from 5-chloro-2-hydroxy-benzaldehyde and benzo[d]thiazol-2-amine. Existence of cyanide as potassium cyanide in acidic medium was considered, characterized by elemental chemical analysis, conductance of molarity, magnetic susceptibility measurements, FTIR electronic spectral studies and mole ratio method. FTIR indicates the participation of amino and acetonitrile nitrogen which is coordinated with the central metal ion.
In this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
Energy is one of the components of the national security of countries and is of particular importance to the industrialized countries, including Germany. Energy policy includes many areas and has an impact on various sectors such as the environment, climate, agriculture and others. During the past few years, Germany has witnessed many transformations, the most important of which is the energy transition towards renewable energy, and it was strengthened in the strategy that was It was developed in 2010, which aims to achieve a long-term energy transformation, and sales of the German energy technology sector have evolved from 2010 to 2020, and this issue is related on the other hand to the concept of energy security and because of its strateg
... Show MoreIn this work we reported the synchronization delay in
semiconductor laser (SL) networks. The unidirectional
configurations between successive oscillators and the correlation
between them are achieved. The coupling strength is a control
parameter so when we increase coupling strength the dynamic of the
system has been change. In addition the time required to synchronize
network components (delay of synchronization) has been studied as
well. The synchronization delay has been increased by mean of
increasing the number of oscillators. Finally, explanation of the time
required to synchronize oscillators in the network at different
coupling strengths.
Tetragonal compound CuAl0.4Ti0.6Se2 semiconductor has been prepared by
melting the elementary elements of high purity in evacuated quartz tube under low
pressure 10-2 mbar and temperature 1100 oC about 24 hr. Single crystal has been
growth from this compound using slowly cooled average between (1-2) C/hr , also
thin films have been prepared using thermal evaporation technique and vacuum 10-6
mbar at room temperature .The structural properties have been studied for the powder
of compound of CuAl0.4Ti0.6Se2u using X-ray diffraction (XRD) . The structure of the
compound showed chalcopyrite structure with unite cell of right tetragonal and
dimensions of a=11.1776 Ao ,c=5.5888 Ao .The structure of thin films showed