The earth's surface comprises different kinds of land cover, water resources, and soil, which create environmental factors for varied animals, plants, and humans. Knowing the significant effects of land cover is crucial for long-term development, climate change modeling, and preserving ecosystems. In this research, the Google Earth Engine platform and freely available Landsat imagery were used to investigate the impact of the expansion and degradation in urbanized areas, watersheds, and vegetative cover on the land surface temperature in Baghdad from 2004 to 2021. Land cover indices such as the Normalized Difference Vegetation Index, Normalized Difference Water Index, and Normalized Difference Built-up Index (NDVI, NDWI, and NDBI) were determined to examine the effects of land cover changes. In addition, the land surface temperature was calculated to assess urbanization expansion's impact on Baghdad's climate warming. The results showed a drastic decrease in vegetative cover and green land, on the other hand, a significant expansion in urbanized areas. Hence, from 2004 to 2021, the urbanized areas and open land rose by 37% and 3%, respectively, while the vegetative cover decreased by 41%. The maximum land surface temperature has risen 4° C, and the minimum land surface temperature has risen 2.5°C.
In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss
... Show MoreThe study aimed to detect the VrPIP2;7 gene using PCR approach, as well as to know the effect of the treatment with four increased melatonin concentrations of 50, 100, 150 and 200 ppm in addition to control treatment were 0 ppm on the gene expression of plasma membrane intrinsic proteins (PIP) genes in Vigna radiata L. plant exhibition for five periods of drought which is irrigation every 24 hours, 48 hours, 5 days, 10 days and every 15 days. The electrophoresis of agarose gel at a concentration of 2% showed one band when detecting the VrPIP2;7 gene with a sizeable 732 bp and using the 100 bp volume index. This gene was selected for sequencing study based on its importance as well as on the results of its gene expression. The sequencing of
... Show MoreThis study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreInhalation of Staphylococcal Enterotoxin B (SEB) is known to induce acute lung injury (ALI) and studies from our laboratory have shown that THC, a psychoactive ingredient found in Cannabis sativa, can attenuate the ALI. In the current study, we investigated the role played by lung microbiota in ALI with or without THC treatment. A dual-dose of SEB was given to C3H/HeJ mice, which were then treated either with vehicle or THC. SEB-administration caused ALI and 100% mortality while all THC-treated mice survived and suppressed the inflammation in the lungs. Furthermore, lung microbiota was collected and 16S rRNA sequencing was performed. The data were analyzed to determine the alpha and b
KE Sharquie, HR Al-Hamamy, AA Noaimi, KA Ali, Journal of Cosmetics, Dermatological Sciences and Applications, 2015 - Cited by 3
In this research, the kinetic studies of four isoenzymes of Asprtate aminotransferase, which partially purified from the urine of chronic renal failure patients were carried out .The four isoenzymes were obeyed Michaelis-Menton's equation and the optimum concentration of their substrate (Aspartic acid) was (166.5x10-3) mole/liter,and their Km values were determined. Four isoenzymesI,II,III,IV have shown an optimum pH at 7.4.The four isoenzymes obeyed Arrhenius equation up to 37º C and their Ea and Q10 constants were determined .
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.