This paper details the process of designing, analysing, manufacturing, and testing an integrated solid-state hydrogen storage system. Analysis is performed to optimise flow distribution and pressure drop through the channels, and experimental investigations compare the effects of profile shape on the overall power output from the fuel cell. The storing of hydrogen is given much attention in the selection of a storage medium, and the effect of a cooling system to reduce the recharging time of the hydrogen storage vessel. The PTFE seal performed excellently, holding pressure over 60 bar, despite requiring changing each time the cell is opened. The assembly of the vessel was simple and straightforward, and there was no indication of pressure damage owing to the FEA analysis that was performed. The cooling chamber, although producing minor leaks due to design oversight, increased performance dramatically, showing a reduction in internal powder temperature from 130°C, down to 25°C during the absorption process, as well as reducing the absorption time down from 30 minutes to just over 5 minutes. The novel idea of implanting a sheathed thermocouple into the centre of the hydride powder proved to be highly valuable asset and provided important information, especially during desorption where the outside container could be heating up, while the inner powder is still cooling down, data that have not been seen before.
The best optimum temperature for the isolate was 30○C while the pH for the maximum mineral removal was 6. The best primary mineral removal was 100mg/L, while the maximum removal for all minerals was obtained after 8 hrs, and the maximum removal efficiency was obtained after 24 hrs. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/ minute. Inoculums of 5ml/ 100ml which contained 106 cell/ ml showed maximum removal for the isolate.
In this paper, series of new complexes of Manganese(II), Cobalt(II), Nickel (II) Cupper(II) Zinc(II), Cadmium(II) and Mercury (II) are prepared from the new ligand [2-(3-benzoylthioureido)-3-(-4- hydroxyphenyl) propanoic acid (BHP) derived from tyrosine and benzoylisothiocyanate .Chemical structures are obtained from their 1 H, 13CNMR spectra (for BHP), elemental microanalyses, molar conductance, FTIR, UV–Vis, magnetic susceptibility in addition to TGA/DTG and DSC analysis, the suggested geometry for all complexes was tetrahedral. The biological activity of BHP and its complexes has been extensively studied against two bacterial species Staphylococcus aurous (G+) and Escherichia coli (G-) by agar-well diffusion technique, where Mn(II), Co
... Show MoreThis study aims to evaluate the performance of emergency departments according to international standards through studying the performance in some of Iraqi public hospitals, where the evaluation performance is considered one of the important topics that take a great deal of officials' attention, especially decision makers in health organizations.
The researcher has derived the research idea from the importance of work in emergency department in hospitals and to what it provides of medical services and quick and immediate nursing care that help in patients' lifesaving, and it is the mirror that reflects the real image for the hospital
... Show MoreIn this work, effects of using different evaporative cooling pads (ECPs) on the energetic and exergetic efficiency of a direct evaporative air cooler (DEAC) have been theoretically and experimentally investigated. Three types of ECPs were used, i.e., honeycomb cellulose cooler pad (HCCP), shading-cloth cooler pad (SCCP), and aspen wood wool cooler pad (AWWCP). For SCCP and AWWCP, a 3-cm pad thickness was used, while for the HCCP, three different values of pad thickness were used, i.e., 3, 5, and 7 cm. Tests were carried out using air velocities of 8, 14, and 19 m/s, measured at the DEAC outlet. Engineering equation solver (EES) used for performing the required calculations of the various parameters affecting the thermal performance of the D
... Show MoreAbstract
In this investigation, Al2O3 nano material of 50nm particles size were added to the 6061 Al aluminium alloy by using the stir casting technique to fabricate the nanocomposite of 10wt% Al2O3. The experimental results observed that the addition of 10wt% Al2O3 improved the fatigue life and strength of constant and cumulative fatigue. Comparison between the S-N curves behaviour of metal matrix (AA6061) and the nanocomposite 10wt% Al2O3 has been made. The comparison revealed that 12.8% enhancement in fatigue strength at 107cycles due to 10wt% nano reinforcement. Also cumulative fatigue l
... Show MoreThe research seeks to achieve its goal of demonstrating the impact of applying banking governance variables on the financial performance of Islamic banks, and the independent research variables are represented by (X) by (the number of independent members in the board (X1), the number of directors in the board (X2), the number of committees emanating from the board ( X3), the percentage of shares owned by major shareholders in the board (X4), the number of members of the Sharia supervisory board (X5)), and the dependent variable (Y) is represented by (rate of return on assets (Y1), rate of return on equity (Y2)).
The research sample included (4) Islamic banks, namely (Iraqi Islamic Bank, National Islamic Bank, Jihan Islamic Bank,
... Show MoreA paraffin wax and copper foam matrix were used as a thermal energy storage material in the double passes air solar chimney (SC) collector to get ventilation effect through daytime and after sunset. Air SC collector was installed in the south wall of an insulated test room and tested with different working angles (30o, 45o and 60o). Different SC types were used; single pass, double passes flat plate collector and double pass thermal energy storage box collector (TESB). A computational model based on the finite volume method for transient tw dimensional domains was carried out to describe the heat transfer and storage in the thermal energy storage material of collector. Also, equivalent specific heat metho
... Show MoreIn this research was to use the method of classic dynamic programming (CDP) and the method of fuzzy dynamic programming (FDP) to controlling the inventory in N periods and only one substance ,in order to minimize the total cost and determining the required quantity in warehouse rusafa principal of the ministry of commerce . A comparison was made between the two techniques، We found that the value of fuzzy total cost is less than that the value of classic total cost