This study investigates asset returns within the Iraq Stock Exchange by employing both the Fama-MacBeth regression model and the Fama-French three-factor model. The research involves the estimation of cross-sectional regressions wherein model parameters are subject to temporal variation, and the independent variables function as proxies. The dataset comprises information from the first quarter of 2010 to the first quarter of 2024, encompassing 22 publicly listed companies across six industrial sectors. The study explores methodological advancements through the application of the Single Index Model (SIM) and Kernel Weighted Regression (KWR) in both time series and cross-sectional analyses. The SIM outperformed the KWR approach in estimating time-varying beta coefficients, yielding a mean Root Mean Squared Error (RMSE) of 0.14316. Furthermore, the integrated KWR-SIM methodology achieved the lowest Adjusted Root Mean Squared Error (ARMSE) value of 0.08152 when modelling the association between risk factors and asset returns within the cross-sectional analytical framework. Statistical tests for significance produced heterogeneous responses of the returns on assets in the Iraqi financial market to the Fama-French posited economic variables. The estimated coefficients for the betas showed significant oscillations for all assets, confirming changes in economic conditions. The results add to our knowledge of the risk-reward relationship in the context of emerging markets and provide methodological insights into financial asset pricing. The evidence indicates that the KWR-SIM method has better capabilities for model fitting
Segmented regression consists of several sections separated by different points of membership, showing the heterogeneity arising from the process of separating the segments within the research sample. This research is concerned with estimating the location of the change point between segments and estimating model parameters, and proposing a robust estimation method and compare it with some other methods that used in the segmented regression. One of the traditional methods (Muggeo method) has been used to find the maximum likelihood estimator in an iterative approach for the model and the change point as well. Moreover, a robust estimation method (IRW method) has used which depends on the use of the robust M-estimator technique in
... Show MoreUrban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area,
... Show MoreSewer systems are used to convey sewage and/or storm water to sewage treatment plants for disposal by a network of buried sewer pipes, gutters, manholes and pits. Unfortunately, the sewer pipe deteriorates with time leading to the collapsing of the pipe with traffic disruption or clogging of the pipe causing flooding and environmental pollution. Thus, the management and maintenance of the buried pipes are important tasks that require information about the changes of the current and future sewer pipes conditions. In this research, the study was carried on in Baghdad, Iraq and two deteriorations model's multinomial logistic regression and neural network deterioration model NNDM are used to predict sewers future conditions. The results of the
... Show MoreThis paper presents a parametric audio compression scheme intended for scalable audio coding applications, and is particularly well suited for operation at low rates, in the vicinity of 5 to 32 Kbps. The model consists of two complementary components: Sines plus Noise (SN). The principal component of the system is an. overlap-add analysis-by-synthesis sinusoidal model based on conjugate matching pursuits. Perceptual information about human hearing is explicitly included into the model by psychoacoustically weighting the pursuit metric. Once analyzed, SN parameters are efficiently quantized and coded. Our informal listening tests demonstrated that our coder gave competitive performance to the-state-of-the- art HelixTM Producer Plus 9 from
... Show MoreThe aerodynamic characteristics of the forward swept wing aircraft have been studied theoretically and an experimentally investigation for the wake field generated by this configuration have been carried out. Low order panel method with the Dirichlet boundary condition have been used to solve the case of the steady, inviscid and compressible flow. Two different panel method techniques have been employed: the source-doublet and the doublet method. The thickness for the various components was considered in the study. Prandtl-Glauert similarity rule has been used to account for the compressibility effects. Experimentally, a model was manufactured from wood with body length (290mm) and main wing span was (204mm). The primary objective of th
... Show MoreThe unsteady state laminar mixed convection and radiation through inclined
cylindrical annulus is investigated numerically. The two heat transfer mechanisms of
convection and radiation are treated independently and simultaneously. The outer
cylinder was kept at a constant temperature while the inner cylinder was heated with
constant heat flux. The study involved numerical solution of the governing equations
which are continuity, momentum and energy equations using finite difference method
(FDM), where the body fitted coordinate system (BFC) was used to generate the grid
mesh for computational plane. A computer program (Fortran 90) was built to calculate
the bulk Nusselt number (Nub) after reaching steady state con
Aspect categorisation and its utmost importance in the eld of Aspectbased Sentiment Analysis (ABSA) has encouraged researchers to improve topic model performance for modelling the aspects into categories. In general, a majority of its current methods implement parametric models requiring a pre-determined number of topics beforehand. However, this is not e ciently undertaken with unannotated text data as they lack any class label. Therefore, the current work presented a novel non-parametric model drawing a number of topics based on the semantic association present between opinion-targets (i.e., aspects) and their respective expressed sentiments. The model incorporated the Semantic Association Rules (SAR) into the Hierarchical Dirichlet Proce
... Show MoreThis study represents an attempt to develop a model that demonstrates the relationship between HRM Practices, Governmental Support and Organizational performance of small businesses. Furthermore, this study assay to unfold the socalled “Black Box” to clarify the ambiguous relationship between HRM practices and organizational performance by considering the pathway of logical sequence influence. The model of this study consists two parts, the first part devoted to examining the causal relationships among HRM practices, employees’ outcomes, and organizational performance. The second part assesses the direct relationship between the governmental support and organizational performance. It is hypothesized that HRM practices positively influ
... Show MoreIn this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.
This research aims to review the importance of estimating the nonparametric regression function using so-called Canonical Kernel which depends on re-scale the smoothing parameter, which has a large and important role in Kernel and give the sound amount of smoothing .
We has been shown the importance of this method through the application of these concepts on real data refer to international exchange rates to the U.S. dollar against the Japanese yen for the period from January 2007 to March 2010. The results demonstrated preference the nonparametric estimator with Gaussian on the other nonparametric and parametric regression estima
... Show More