In the lifetime process in some systems, most data cannot belong to one single population. In fact, it can represent several subpopulations. In such a case, the known distribution cannot be used to model data. Instead, a mixture of distribution is used to modulate the data and classify them into several subgroups. The mixture of Rayleigh distribution is best to be used with the lifetime process. This paper aims to infer model parameters by the expectation-maximization (EM) algorithm through the maximum likelihood function. The technique is applied to simulated data by following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). The results showed that the method performed well in all simulation scenarios with respect to different sample sizes.
BP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
In this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the
... Show More
It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna
... Show More
It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna
... Show MoreHuman interaction technology based on motion capture (MoCap) systems is a vital tool for human kinematics analysis, with applications in clinical settings, animations, and video games. We introduce a new method for analyzing and estimating dorsal spine movement using a MoCap system. The captured data by the MoCap system are processed and analyzed to estimate the motion kinematics of three primary regions; the shoulders, spine, and hips. This work contributes a non-invasive and anatomically guided framework that enables region-specific analysis of spinal motion which could be used as a clinical alternative to invasive measurement techniques. The hierarchy of our model consists of five main levels; motion capture system settings, marker data
... Show MoreIn this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.