Collapsible behaviour of soil is considered as one of the major problems in the stability of roadway embankment, the lack of cohesion between soil particles and its sensitivity to the change of moisture content are reasons for such problem. Creation of such cohesion may be achieved by implementation of liquid asphalt and introduction of Nano additives. In this work, silica fumes, fly ash and lime have been implemented with the aid of asphalt emulsion to improve the unconfined compressive strength of the collapsible soil. Specimens of 38 mm in diameter and 76 mm height have been prepared with various percentages of each type of Nano additive and fluid content. Specimens were subjected to unconfined compressive strength determination at dry and absorbed test conditions. It was concluded that the unconfined compressive strength increases by (13-25) folds after stabilization with asphalt emulsion at dry test condition. The implementation of lime shows that the cohesive strength is increased by a range of (93-517)% for absorbed condition, while it decreased by a range of (50- 31)% at dry test conditions. When 5% silica fumes was introduced, the compressive strength increased by 9.2% in dry test condition while it decreases in a range of (31.5-63.8)% for other percentages. When fly ash class F was introduced, the reduction in the strength was in the range of (100-120)% for various fly ash content at dry test condition.
This work investigates the effect of earthquakes on the stability of a collective pile subjected to seismic loads in the soil layer. Plaxis 3D 2020 finite element software modeled pile behavior in dry soils with sloping layers. The results showed a remarkable fluctuation between the earthquakes, where the three earthquakes (Halabja, El Centro, and Kobe) and the acceleration peak in the Kobe earthquake had a time of about 11 seconds. Different settlement results were shown, as different values were recorded for the three types of earthquakes. Settlement ratios were increased by increasing the seismic intensity; hence the maximum settlement was observed with the model under the effect of the Kobe earthquake (0.58 g), where
... Show MoreThe present study was performed to spotlight the potential role of soil bacteria in the Al-Rumaila oil field as a bioindicator of heavy metals pollution. For this purpose, nine soil samples were collected from different sites, with 20cm depth, to assess the pollution status depending on the total and available concentrations of heavy metals. The result indicates pollution of the studied soils with the following metals: Cd, Cu, Fe, Zn, and Pb. The mean of total concentration for all studied metals was higher than the allowed maximum limit based on the international limit:(3.394, 3.994, 39.993, 8844.979,150.372, and 103.347 µg/g), respectively. While measuring the total Metal concentration is important in determining the de
... Show More
Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use
... Show MoreSolid waste generation and composition in Baghdad is typically affected by population growth, urbanization, improved economic conditions, changes in lifestyles and social and cultural habits.
A burning chamber was installed to burn cellulosic waste only. It was found that combustion reduced the original volume and weight of cellulosic waste by 97.4% and 85% respectively.
A batch composting study was performed to evaluate the feasibility of co-composting organic food waste with the cellulosic bottom ash in three different weight ratios (w/w) [95/5, 75/25, 50/50].
The composters were kept in controlled aerobic conditions for 7 days. Temperature, moisture, and pH were measured hourly as process succe
... Show MoreCollapsible soil has a metastable structure that experiences a large reduction in volume or collapse when wetting. The characteristics of collapsible soil contribute to different problems for infrastructures constructed on its such as cracks and excessive settlement found in buildings, railways channels, bridges, and roads. This paper aims to provide an art review on collapse soil behavior all over the world, type of collapse soil, identification of collapse potential, and factors that affect collapsibility soil. As urban grow in several parts of the world, the collapsible soil will have more get to the water. As a result, there will be an increase in the number of wetting collapse problems, so it's very important to com
... Show MoreThe present theoretical study analyzes the legacy of the Chicago School of Urban Sociology and evaluates it in the light of the growth and development of Chicago City and the establishment of sociology in it. Sociology has become an academic discipline recognized in the United States of America in the late nineteenth century, particularly, after the establishment of the first department of sociology in the University of Chicago in 1892. That was during the period of the rapid industrialization and sustainable growth of the Chicago City. The Chicago School relied on Chicago City in particular, as one of the American cities that grew and expanded rapidly in the first two decades of the twentieth century. At the end of the nineteenth centur
... Show MoreAbstract This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influ
... Show More