Intelligent or smart completion wells vary from conventional wells. They have downhole flow control devices like Inflow Control Devices (ICD) and Interval Control Valves (ICV) to enhance reservoir management and control, optimizing hydrocarbon output and recovery. However, to explain their adoption and increase their economic return, a high level of justification is necessary. Smart horizontal wells also necessitate optimizing the number of valves, nozzles, and compartment length. A three-dimensional geological model of the As reservoir in AG oil field was used to see the influence of these factors on cumulative oil production and NPV. After creating the dynamic model for the As reservoir using the program Petrel (2017.4), we improve the robustness of forecasting production from smart wells using reservoir simulation. High-level details in the rock and fluid flow properties are required in the horizontal well region to capture the flow dynamics accurately. Thus, the study offers an enhanced method for predicting the performance of intelligent or smart wells in reservoir modeling. This model was history matched for a period of 20 years for three horizontal wells by using program Petrel (2017.4) and ECLIPS (2011). After successful validation of model on a field scale and well level, performance prediction was carried out to see the effect of (number of valves, number of nozzle and compartment length) using PICD/AFCV completion. Optimizing well performance entails lowering water-cut. From an economic viewpoint, the goal is to maximize NPV or profit, depending on the situation, from PICD wells, which compared to other wells.
In this work, the design and implementation of a smart energy metering system has been developed. This system consists of two parts: billing center and a set of distributed smart energy meters. The function of smart energy meter is measuring and calculating the cost of consumed energy according to a multi-tariff scheme. This can be effectively solving the problem of stressing the electrical grid and rising consumer awareness. Moreover, smart energy meter decreases technical losses by improving power factor. The function of the billing center is to issue a consumer bill and contributes in locating the irregularities on the electrical grid (non-technical losses). Moreover, it sends the switch off command in case of the consumer bill is not
... Show MoreThe aim of this research is to compare traditional and modern methods to obtain the optimal solution using dynamic programming and intelligent algorithms to solve the problems of project management.
It shows the possible ways in which these problems can be addressed, drawing on a schedule of interrelated and sequential activities And clarifies the relationships between the activities to determine the beginning and end of each activity and determine the duration and cost of the total project and estimate the times used by each activity and determine the objectives sought by the project through planning, implementation and monitoring to maintain the budget assessed
... Show MoreThis work is concerned with the vibration attenuation of a smart beam interacting with fluid using proportional-derivative PD control and adaptive approximation compensator AAC. The role of the AAC is to improve the PD performance by compensating for unmodelled dynamics using the concept of function approximation technique FAT. The key idea is to represent the unknown parameters using the weighting coefficient and basis function matrices/vectors. The weighting coefficient vector is updated using Lyapunov theory. This controller is applied to a flexible beam provided with surface bonded piezo-patches while the vibrating beam system is submerged in a fluid. Two main effects are considered: 1) axial stretching of the vibrating beam that leads
... Show MoreThe study was conducted at the fields of the Department of Horticulture and Landscape Gardening, College of Agriculture, University of Baghdad " Abu Ghraib" during the growing seasons 2013-2014 to Evaluate the Vegetative growth , yield traits and genetic parameter of some tomato mutants. Results showed significantly increased of plant height in M6-2 mutant 245cm in Comparison with M6- 3 130 cm . M6-4 mutant significantly increasing of floral clusters 13 . Mutant M6-3 showed significantly increasing the average of, fruit weight 125.9g and plant yield 7.17 kg.plant-1 as comparison with M6-2 which showed decreasing of average of fruit weight and plant yield 79.40g and 4.38 kg.plant-1 respectively. Also results showed the highest Genetic variat
... Show MoreIn this study, silver-tungsten oxide core–shell nanoparticles (Ag–WO3 NPs) were synthesized by pulsed laser ablation in liquid employing a (1.06 µm) Q-switched Nd:YAG laser, at different Ag colloidal concentration environment (different core concentration). The produced Ag–WO3 core–shell NPs were subjected to characterization using UV–visible spectrophotometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy, electrical analysis, and photoluminescence PL. The UV–visible spectra exhibited distinct absorption peaks at around 200 and 405 nm, which attributed to the occurrence of surface Plasmon reson
Production logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations af
... Show More