Preferred Language
Articles
/
0hinJ5gBVTCNdQwCQrkX
Deep learning-based threat Intelligence system for IoT Network in Compliance With IEEE Standard
...Show More Authors

The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.

Crossref
View Publication
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Economics And Administrative Sciences
The Impact of Emotional Intelligence on Employee Performance in Saudi Arabia Banking Sector
...Show More Authors

Saudi Arabia’s banking sector plays an important role in the country’s development as it is among the leading sectors in the financial sector. Considering, two main Saudi banks (The National Commercial Bank and Saudi American bank), the present study aims to observe the impact of emotional intelligence on employee performance. The components of emotional intelligence affecting employee performance include self-management, relationship management, self-awareness, and social awareness. A quantitative methodology was applied to analyse the survey results of 300 respondents over the period from 2018 to 2019. The results show that there was a significant positive impact of self-management, self-awareness, and relationship manageme

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (14)
Crossref (6)
Scopus Crossref
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
Build and Implemented Learning Package for Prolog Programming Language Using Visual Basic.Net 2010
...Show More Authors

E-Learning packages are content and instructional methods delivered on a computer
(whether on the Internet, or an intranet), and designed to build knowledge and skills related to
individual or organizational goals. This definition addresses: The what: Training delivered
in digital form. The how: By content and instructional methods, to help learn the content.
The why: Improve organizational performance by building job-relevant knowledge and
skills in workers.
This paper has been designed and implemented a learning package for Prolog Programming
Language. This is done by using Visual Basic.Net programming language 2010 in
conjunction with the Microsoft Office Access 2007. Also this package introduces several
fac

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Clinical And Experimental Dentistry
Bond strength of a new Kevlar fiber-reinforced composite post with semi-interpenetrating polymer network (IPN) matrix
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Wed May 19 2010
Journal Name
Journal Of College Of Science, University Of Babylon
H-Point Standard Addition Method for Simultaneous Determination of Cimetidine and Erythromycin Ethylsuccinate Drugs Using Bromothymol Blue as a Chromogenic Complexing Agent
...Show More Authors

The H-Point Standard Addition Method (H-PSAM) has been applied for spectrophotometric simultaneous determination of Cimetidine and Erythromycin ethylsuccinate using Bromothymol Blue (BTB) as a chromogenic complexing agent in a buffer solution at pH 5.5.

Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Advanced Research In Dynamical And Control Systems
Reliable and valid questionnaire for organizational, system, and individual factors to utilize cloud health information system
...Show More Authors

Scopus
Publication Date
Thu Jul 31 2025
Journal Name
مجلة واسط للعلوم الانسانية
Artificial Intelligence in English Language Education in Iraq: A Review study of Interventions and Perceptions
...Show More Authors

AI in teaching English is reshaping language learning. While interest in AI-supported education is growing worldwide, research in this area is still emerging in Iraq. This review synthesizes empirical AI-based intervention studies to enhance English language learning in Iraqi higher education, and the perceptions of stakeholders regarding AI tools in language instruction. The reviewed intervention studies, comprising studies employed different AI platforms to support grammar instruction, speaking fluency, writing feedback, and pragmatic competence. These interventions yielded improvements in learners’ performance, motivation, and communicative confidence. In parallel, perception-focused studies revealed positive attitudes toward A

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 16 2025
Journal Name
Wasit Journal Of Sports Sciences
The impact of the Needham model on learning the skills of dribbling and handling in football for students
...Show More Authors

View Publication
Publication Date
Sun Nov 16 2025
Journal Name
Journal Of Physical Education
The effect of the Perkins-Blyth model on learning some compound skills in soccer for second intermediate students
...Show More Authors

View Publication
Publication Date
Sat Aug 09 2025
Journal Name
Scientific Reports
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref