Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematically studied by exploring available studies of different metaheuristic algorithms used for FS to improve TC. This paper will contribute to the body of existing knowledge by answering four research questions (RQs): 1) What are the different approaches of FS that apply metaheuristic algorithms to improve TC? 2) Does applying metaheuristic algorithms for TC lead to better accuracy than the typical FS methods? 3) How effective are the modified, hybridized metaheuristic algorithms for text FS problems?, and 4) What are the gaps in the current studies and their future directions? These RQs led to a study of recent works on metaheuristic-based FS methods, their contributions, and limitations. Hence, a final list of thirty-seven (37) related articles was extracted and investigated to align with our RQs to generate new knowledge in the domain of study. Most of the conducted papers focused on addressing the TC in tandem with metaheuristic algorithms based on the wrapper and hybrid FS approaches. Future research should focus on using a hybrid-based FS approach as it intuitively handles complex optimization problems and potentiality provide new research opportunities in this rapidly developing field.
Several million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up to 10%. Whereas,
... Show MoreThere are serious environmental problems in all countries of the world, due to the waste material such as crushed clay bricks (CCB) and in huge quantities resulting from the demolition of buildings. In order to reduce the effects of this problem as well as to preserve natural resources, it is possible to work on recycling (CCB) and to use it in the manufacture of environmentally friendly loaded building units by replacing percentages in coarse aggregate by volume. It can be used as a powder and replacing of percentages in cement by weight and study the effect on the physical and mechanical properties of the concrete and the masonry unit. Evaluation of its performance through workability, dry density, compressive strength, thermal conduct
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
Abstract
In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min
... Show MorePreserving and saving energy have never been more important, thus the requirement for more effective and efficient heat exchangers has never been more important. However, in order to pave the way for the proposal of a truly efficient technique, there is a need to understand the shortcomings and strengths of various aspects of heat transfer techniques. This review aims to systematically identify these characteristics two of the most popular passive heat transfer techniques: nanofluids and helically coiled tubes. The review indicated that nanoparticles improve thermal conductivity of base fluid and that the nanoparticle size, as well as the concentrations of the nanoparticles plays a major role in the effectiveness of the nanofluids.
... Show MoreIn this paper, several combination algorithms between Partial Update LMS (PU LMS) methods and previously proposed algorithm (New Variable Length LMS (NVLLMS)) have been developed. Then, the new sets of proposed algorithms were applied to an Acoustic Echo Cancellation system (AEC) in order to decrease the filter coefficients, decrease the convergence time, and enhance its performance in terms of Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE). These proposed algorithms will use the Echo Return Loss Enhancement (ERLE) to control the operation of filter's coefficient length variation. In addition, the time-varying step size is used.The total number of coefficients required was reduced by about 18% , 10% , 6%
... Show MoreThis study explores the language used in reporting political headlines conducting a rhetorical stylistic analysis. It is based on showing the effect of the rhetorical stylistic relations in news reporting. The aim is to investigate the structure adopted in reporting political news. It argues that the rhetorical stylistic devices are necessary and applicable to non-literary texts, i.e. political headlines to evaluate language use in the representation of non-literary texts. The analysis was carried out on data selected from the British broadsheet The Guardian and the American New York Times newspaper headlines. The data were examined and subjected to a contrastive analysis incorporating rhetorical and stylistic tools to discern h
... Show MoreA vocative expression can be defined as an expression of direct address where the participant identity is set forth explicitly within a sentence. This study aims at showing how the vocative particles are used in literally texts, namely in the short story “The Garden Party" written by Kathryn Mansfield and identifying the forms of these vocative particles as used by the characters along with the functions of these vocative particles. For the analysis of vocative forms, the researcher used Quirk and Greenbaum (1973) model. Functionally, the data were analyzed based on Quirk et al. (1985) model. However, the results of this study shows that the characters in “The Garden Party” short story used various forms of vocative particles and
... Show More