Wearable sensors are a revolutionary tool in agriculture because they collect accurate data on plant environmental conditions that affect plant growth in real-time. Moreover, this technology is crucial in increasing agricultural sustainability and productivity by improving irrigation strategies and water resource management. This review examines the role of wearable sensors in measuring plant water content, leaf and air humidity, stem flow, plant and air temperature, light, and soil moisture sensors. Wearable sensors are designed to monitor various plant physiological parameters in real-time. These data, obtained through wearable sensors, provide information on plant water use and physiology, making our agricultural choices more informed and accurate. Internet of Things (IoT) technologies can improve irrigation strategies and reduce water consumption by analyzing data from wearable sensors and adapting it to automate the irrigation system. The review also highlights the importance of using Artificial Intelligence (AI) to predict plant water needs accurately. This review concludes that wearable sensors provide accurate and real-time data on the stress state of plants and their surroundings, improving water management efficiency and agricultural production sustainability. These IOT and AI-enabled technologies are a crucial milestone toward smart and sustainable agriculture, which shows the importance of innovation in responding to enhanced climate threats.
The experiment was carried out in the Department of Biology, College of Education for Pure Science –Ibn AL Haitham, University of Baghdad, Iraq, during the growing season 2017 – 2018. The objective was to find out the effect of foliar spraying of tryptophan and IQ COMBI nano fertilizer on cumin plants. The obtained results show that both tryptophan and IQ COMBI nano fertilizer increased plant height, root length, shoot dry weight, the content of nitrogen, phosphorus, potassium, protein percentage, no. compound umbel.plant-1, wt. seeds. plant-1. The optimum treatment combination was calculated as 30 mg.L-1 tryptophan, 1000mg.L-1 IQ COMBI nano fertilizer, which gave the highest values for most of the parameters studied
Aqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.
There is a set of economic factors that affect the rationalization of decisions on unexploited resources within the economic unit and here determines the problem of the search for the question of what economic factors cause the emergence of asymmetric costs, and aims to identify these factors in the costs of adjustment to resources, change in The size of the activity of the economic unit, the general trend of sales change in the previous period, and the economic level of the country. Rh measure the impact of these factors on economic unity, and taking into consideration the impact when formulating decisions.
The current research deals with practical studies that explain to the Iraqi consumer multiple instances about the phenomenon of water hammer which occur in the water pipeline operating with pressure. It concern a practical study of the characteristics of this phenomenon and economically harmful to the consumer the same time. Multiple pipe fittings are used aimed to reduce this phenomenon and its work as alternatives to the manufactured arresters that used to avoid water hammer in the sanitary installations, while the consumer did not have any knowledge as to the non-traded for many reasons, including the water pressure decreases in the networks and the use of consumer pumps to draw water directly from the network. Study found a numbe
... Show MoreConstruction and operation of (2 m) parabolic solar dish for hot water application were illustrated. The heater was designed to supply hot water up to 100 oC using the clean solar thermal energy. The system includes the design and construction of solar tracking unit in order to increase system performance. Experimental test results, which obtained from clear and sunny day, refer to highly energy-conversion efficiency and promising a well-performed water heating system.
study was conducted on a stretch of Tigris river crossing Baghdad city to determine the concentration of some chlorophenols pollutants. Aqueous samples were preliminary enriched about 500 times and the chlorophenols have determined using high performance liquid chromatography HPLC. Limits of detection LOD were (0.007–0.012 mg L-1), relative standard deviations RSD% were 2.4%–5.59% and relative recoveries were 51.06%– 104.07%. The existence of chlorophenols in Tigris river was in the range 0.023–4.596 mg L-1. The developed method suggested in this study can be applied for routine analysis and monitoring of chlorinated phenols in environmental aqueous samples.