The purpose of this study to synthesize and characterize silver nanoparticles using phenolic compounds obtained from Camellia sinensis, to test the antibacterial properties of biosynthesized nanoparticles on the formation of biofilms in multidrug-resistant Pseudomonas aeruginosa. Ten isolates of P. aeruginosa were obtained from the Genetic Engineering and Biotechnology Institute laboratories of the University of Baghdad. By using the VITEK-2 system and culturing the isolates on cetrimide agar, the diagnosis was confirmed. Camellia sinensis silver nanoparticles (CAgNPs) were created using an extract of the plant's aqueous and methanolic leaves. Based on the results of the nanoparticle synthesis, spherical nanoparticles that may be single or mixed were included in both the aqueous and methanolic extracts of silver nanoparticles. By comparing their retention times to those of the reference compounds, the HPLC findings revealed that two phenolic compounds (gallic acid and caffeine) had been discovered. Utilising the disc diffusion technique, the antibacterial activity of (CAgNPs) was assessed. The results indicated that the methanolic (CAgNPs) extract was more effective than the aqueous (CAgNPs) extract at 375 and 750 ppm, giving the highest inhibition zone 17.67 and 21.33 mm, respectively, when compared to the aqueous (CAgNPs) extract, which produced inhibitory zones 13.00 and 16.33 mm, respectively. The MIC findings indicated that the methanolic CAgNPs extract was more effective than the aqueous CAgNPs extract; the MIC of the methanolic CAgNPs extract was 23.43 μg/ml in all P. aeruginosa isolates, except the isolates No. 9 and 10, which was 11.718 μg/ml. While in the aqueous extract, the MIC in all P. aeruginosa isolates was 187.5 μg/ml, with the exception of isolates No. 9 and 10, which was 93.75 μg/ml. Additionally, the methanolic CAgNPs extract entirely inhibited P. aeruginosa from building a biofilm when used at 23.43 μg/ml. However, at 46.87 μg/ml of the aqueous CAgNPs extract, totally reduced the biofilm forming activity on P. aeruginosa isolates
Removal of solar brown and direct black dyes by coagulation with two aluminum based
coagulants was conducted. The main objective is to examine the efficiency of these
coagulants in the treatment of dye polluted water discharged from Al-Kadhymia Textile
Company (Baghdad-Iraq). The performance of these coagulants was investigated through
jar test by comparing dye percent removal at different wastewater pH, coagulant dose,
and initial dye concentration. Results show that alum works better than PAC under acidic
media (5-6) and PAC works better under basic media (7-8) in the removal of both solar
brown and direct black dyes. Higher doses of PAC were required to achieve the
maximum removal efficiency under optimum pH co
This study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr
... Show MoreTo determine the expression of key epithelial–mesenchymal transition (EMT) markers in gingival tissue samples collected from patients with periodontitis.
Epithelial–mesenchymal transition is a process responsible for shifting epithelial‐phenotype to mesenchymal‐phenotype leading to loss of epithelial‐barrier function. Thus, EMT could be involved as a pathogenic mechanism in periodontitis as both conditions share common promoters and signalling pathways.
Gingival tissue samples were collected fro
The compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, is a potent ligand for aryl hydrocarbon receptor (AhR). In the current study, we made an exciting observation that naive C57BL/6 mice that were exposed i.p. to TCDD showed massive mobilization of myeloid-derived suppressor cells (MDSCs) in the peritoneal cavity. These MDSCs were highly immunosuppressive and attenuated Con A–induced hepatitis upon adoptive transfer. TCDD administration in naive mice also led to induction of several chemokines and cytokines in the peritoneal cavity and serum (CCL2, CCL3, CCL4, CCL11, CXCL1, CXCL2, CXCL5, CXCL9, G-CSF, GM-CSF, VEGF, and M-CSF) and chemokine receptors