The purpose of this study to synthesize and characterize silver nanoparticles using phenolic compounds obtained from Camellia sinensis, to test the antibacterial properties of biosynthesized nanoparticles on the formation of biofilms in multidrug-resistant Pseudomonas aeruginosa. Ten isolates of P. aeruginosa were obtained from the Genetic Engineering and Biotechnology Institute laboratories of the University of Baghdad. By using the VITEK-2 system and culturing the isolates on cetrimide agar, the diagnosis was confirmed. Camellia sinensis silver nanoparticles (CAgNPs) were created using an extract of the plant's aqueous and methanolic leaves. Based on the results of the nanoparticle synthesis, spherical nanoparticles that may be single or mixed were included in both the aqueous and methanolic extracts of silver nanoparticles. By comparing their retention times to those of the reference compounds, the HPLC findings revealed that two phenolic compounds (gallic acid and caffeine) had been discovered. Utilising the disc diffusion technique, the antibacterial activity of (CAgNPs) was assessed. The results indicated that the methanolic (CAgNPs) extract was more effective than the aqueous (CAgNPs) extract at 375 and 750 ppm, giving the highest inhibition zone 17.67 and 21.33 mm, respectively, when compared to the aqueous (CAgNPs) extract, which produced inhibitory zones 13.00 and 16.33 mm, respectively. The MIC findings indicated that the methanolic CAgNPs extract was more effective than the aqueous CAgNPs extract; the MIC of the methanolic CAgNPs extract was 23.43 μg/ml in all P. aeruginosa isolates, except the isolates No. 9 and 10, which was 11.718 μg/ml. While in the aqueous extract, the MIC in all P. aeruginosa isolates was 187.5 μg/ml, with the exception of isolates No. 9 and 10, which was 93.75 μg/ml. Additionally, the methanolic CAgNPs extract entirely inhibited P. aeruginosa from building a biofilm when used at 23.43 μg/ml. However, at 46.87 μg/ml of the aqueous CAgNPs extract, totally reduced the biofilm forming activity on P. aeruginosa isolates
In this article, the influence of group nano transition metal oxides such as {(MnO2), (Fe2O3) and (CuO)} thin films on the (ZnO-TiO2) electric characteristics have been analyzed. The prepared films deposited on glass substrate laser Nd-YAG with wavelength (ℷ =1064 nm) ,energy of (800mJ) and number of shots (400). The density of the film was found to be (200 nm) at room temperature (RT) and annealing temperature (573K).Using DC Conductivity and Hall Effect, we obtained the electrical properties of the films. The DC Conductivity shows that that the activation energies decrease while the σRT at annealing temperature with different elements increases the formation of mixed oxides. The Hall effect, the elec
... Show MoreSb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre
... Show MoreFH Ghanim, Journal of Global Pharma Technology, 2018
Crystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O<
... Show Moreackground: Escherichia coli is one of the most
important bacterial pathogen that can cause several
disease to human being . In our study we try to
investigate the sensitivity resistance pattern of
Escherichia coli against three antibiotics ( Amikacin,
Nalidixic acid and Cephalexin).
Methods: For this purpose we collected 51 clinical
isolates of Escherichia coli from stool and urine of
outpatient and inpatient patients from different wards
of AL-SADER Teaching Hospital in AL-NAJAF
AL-ASHRAf, IRAQ, and tested by culture and
sensitivity test .
Results: The results appeared that Amikacin show
the highest percentage of sensitivity ( 66.66 % ) ,
while Cephalexin show the lowest percentage of
sensiti
The new ligand [3,3’-(1,2-phenylenebis(azanediyl))bis(5,5-dimethylcyclohex-2-en-1-one)] (L) derived from 5,5-Dimethylcyclohexane-1,3-dione with 1,2-phenylenediamine was used to prepare a new chain of metal complexes of Mn(ii), Co(ii), Ni(ii), Cu(ii), Cd(ii) and Zn(ii) by inclusive formula [M(L)]Cl2. Characterized compounds on the basis of 1H, 13CNMR (for ligand (L)), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H and %N, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA), while its corrosion inhibition for (plain steel) in tap water is studied by weight loss. These measurements proved th
This study discussed the effects of doping with silver (Ag) on the optical and structural properties of
CdO nanoparticles at different concentrations 0, 1, 2, 3, 4, 5 wt% prepared by the precipitation method. The
materials were annealed at 550˚C for 1 h. The structural, topographical, and optical properties were
diagnosed by X-ray diffraction analysis, atomic force instrument, and visible and ultraviolet spectrometers.
The results show that the average diameter of the grains depends on the percentage of added silver to the
material, as the diameter decreased from 88.8 to 59.7 nm, and it was found that the roughness increased from
5.56 to 26.5. When studying the optical properties, it was noted that th
In this work, we focused on studying 1,4-naphthoquinones and their derivatives, and knowing the methods of preparing them using different auxiliary agents and forming derivatives containing heterocyclic rings, active groups and saturated rings containing heterogeneous elements . In addition, due to their strong antibacterial, antifungal and anticancer activity, 1,4-naphthoquinone compounds biological importance and are considered a source of various pharmaceutical compounds.