The present work aims to study the combustion characteristics related to syngas-diesel dual-fuel engine operates at lambda value of 1.6 operated by five different replacement ratios (RR) of syngas with diesel, which are (10%, 20%, 30 %, 40 % and 50%). ANSYS Workbench (CFD) was used for simulating the combustion of the syngas-diesel dual-fuel engine. The numerical simulations were carried out on the Ricardo-Hydra diesel engine. The simulation results revealed that the diesel engine’s combustion efficiency was enhanced by increasing the diesel replacement with Syngas fuel. The diesel engine’s combustion efficiency The peak in-cylinder temperature was enhanced from 915.9K to 2790.5K (50% RR). Moreover, the peak pressure was improved from 3659073 Pa to 4525366 pa (23% increase), 4947790 pa (35% increase), 5929709Pa (62% increase) and 6708188 Pa (83%) for diesel fuel mode and dual fuel mode (20%, 30%, 40% and 50%) respectively. Moreover, CO, NO, and CO2 emissions in the engine increased with the increase in syngas’ replacement ratio with diesel. Besides, the emission levels of NO, CO2 and CO from a diesel engine are lower than a dual fuel engine (syngas-diesel). The NO mass fraction values rise from 2.02505E-19 at diesel mode to 0.000834126 (20% RR), 0.004176854 (30% RR), 0.005021933 (40% RR) and 0.007554865 (50% RR). Moreover, the CO2 mass fraction values increase from 5.90944E-07 at diesel mode to 0.033849446 (50% RR).
In this work, the effect of partial amounts of gases in gas mixture of a CW CO2 laser on the output power was investigated. Also their effect on the condition determining the glow-discharge self-sustaining required for pumping the active medium was studied. Two fit relations were derived to predict the output laser power and the electric field to unit pressure ratio as functions to the partial amounts of gases. Results presented in this work could be used fruitfully to determine some of the optimum operational conditions of glow-discharge low-power CW CO2 lasers.
In this work, HgBa2CaCu2-xSbxO8+δ compounds with (x = 0.2, 0.4, 0.6 and 0.8) have been prepared by the solid-state reaction method. Structural, morphological, and electrical properties were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. Using the 4-probe technique to study the effect of antimony-substitution for Copper on the electrical properties of HgBa2CaCu2-xSbxO8+δ (Hg-1212) phase was investigated by measuring the resistivity as a function of temperature. Results indicate that the addition of antimony (Sb) increases the volume fraction of the phase and changes the superconducting transition temperature Tc of the superconductor to a normal state. The dielectric loss factor and ac
... Show MoreThis study is concerned with the effect of adding two kinds of ceramic materials on the mechanical properties of (Al-7%Si- 0.3%Mg) alloy, which are zirconia with particle size (20μm > P.S ≥ 0.1μm) and alumina with particle size (20μm > P.S ≥ 0.1μm) and adding them to the alloy with weight ratios (0.2, 0.4, 0.6, 0.8 and 1%). Stirring casting method has been used to make composite material by using vortex technique which is used to pull the particles to inside the melted metals and distributed them homogenously.
After that solution treatment was done to the samples at (520ºC) and artificial ageing at (170ºC) in different times, it has been noticed that the values of hardness is increased with the aging time of the o
... Show MoreCu-Al-Ni shape memory alloy specimens has been fabricated using powder metallurgy technique with tube furnace and vacuum sintering environment , three range of Nb powder weight percentage (0.3,0.6,0.9)% has been added. Micro hardness and sliding wear resist has been tested followed by X-ray diffraction, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX) for micro structure observation. The experimental test for the samples has showed that the increase of Nb powder weight percentage in the master alloy has a significant effect on increasing the hardness and decreasing the wear resist therefore it will enhance the mechanical properties for this alloy.
A study carried out in quail’s field owned by the Department of Animal production/ Collage of Agriculture / Tikrit University. For the period 14/ 5/ 2016 to 4/ 6/ 2016 in order to study the effect of adding Curcuma longa - to the diet of quails - on some productive and physiological characteristics of the Japanese quail birds bred for meat production. Using (48) quail birds which are two weeks old provided by Department of Agricultural Research. The birds were divided randomly after weighing them into three treatments; four replicate treatments for (4 bird/ replicate). The treatments as follows: (T1) control group (fed diet without any supplement), second (T2) and third (T3) groups were fed diet supplemental 4.5 and 9g Curcuma powder /
... Show MoreIn this work, a flat-plate solar air heater (FSAH) and a tubular solar air heater (TSAH) were designed and tested numerically. The work investigates the effect of increasing the contact area between the flowing air and the absorber surface of each heater and predicts the expected results before the fabrication of the experimental rig. Three-dimensional two models were designed and simulated by the ANSYS-FLUENT 16 Program. The solar irradiation and ambient air temperature were measured experimentally on December 1st 2022, at the weather conditions of Baghdad City- Iraq, at three air mass flow rates, 0.012 kg/s, 0.032 kg/s, and 0.052 kg/s. The numerical results showed the advantage in the thermal performance of
... Show MoreThe study was reflection of the impact of the widespread use of polymer Novolak composite reinforced Glass fiber and Asbestos fiber once again with weight fraction 60% on the physical properties, which included (Hardness, Compressive deformation, compressive modulus of elasticity, Flexural modulus of elasticity, Resilience modulus, the maximum of Flexural strength, Flexural strain energy and Shear strength inner layers); it is known how much important the media as a source of bacterial contamination, which contributes directly or indirectly in the process of aging of these materials. These Novolak composite reinforced, prepared by weight fraction of (10%) and (14%) of the Hexamethylene-tetraamine (HMTA) hardener material. It
... Show MoreThe vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult conditions like radiation, high temperature and noise with minimum cost of manufacturing and maintenance. A vortex rate sensor made of wood has been designed and manufactured to study theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that the relation between the differential pressure taken from the sensor pickoff points and the angular velocity of the sensor was linear.The present work involved theoretical and experimental study of vortex rate sensor static characteristics .Vortex rat
The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult
conditions like radiation, high temperature and noise with minimum cost of manufacturing and
maintenance. A vortex rate sensor made of wood has been designed and manufactured to study
theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that
the relation between the differential pressure taken from the sensor pickoff points and the angular
velocity of the sensor was linear.The present work involved theoretical and experimental study of
vortex rate sensor static characteri