Preferred Language
Articles
/
0RZ6UIkBVTCNdQwCcIh9
Estimation of Heavy Metals Contamination in the Soil of Zaafaraniya City Using the Neural Network
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems Using Convolutional Neural Network
...Show More Authors

AA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai

... Show More
View Publication
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
The Adsorption of Some Trace Heavy Metals from Aqueous Solution Using Non Living Biomass of Sub Merged Aquatic Plant Ceratophyllum demersum
...Show More Authors

Heavy metals contamination in aquatic ecosystems is considered one of the most important threats of aquatic life. Submerge aquatic plants Ceratophyllum demersum in its non living form used for the removal of trace elements. This article studied the ability of the fine powder of C.demersum for the removal of some heavy metals (HM) like copper, cadmium, lead and chrome from aqueous solution with in variable experimental factors. The study occupy two treatments the first included different hydrogen ions pH within a range of 4, 5,6and 8 with a constant HM concentration (1000 ppm).While the second treatment represented by using variable HM concentrations within a range of (250,500,750and 1000 ppm) with a constant pH=7.In both treatments the a

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of PVT Correlation for Iraqi Crude Oils Using Artificial Neural Network
...Show More Authors

Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Petroleum Research And Studies
Modeling of Oil Viscosity for Southern Iraqi Reservoirs using Neural Network Method
...Show More Authors

The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Mar 06 2025
Journal Name
Aip Conference Proceedings
Solving 5th order nonlinear 4D-PDEs using efficient design of neural network
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Sep 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Optimal Design of Cylinderical Ectrode Using Neural Network Modeling for Electrochemical Finishing
...Show More Authors

The finishing operation of the electrochemical finishing technology (ECF) for tube of steel was investigated In this study. Experimental procedures included qualitative
and quantitative analyses for surface roughness and material removal. Qualitative analyses utilized finishing optimization of a specific specimen in various design and operating conditions; value of gap from 0.2 to 10mm, flow rate of electrolytes from 5 to 15liter/min, finishing time from 1 to 4min and the applied voltage from 6 to 12v, to find out the value of surface roughness and material removal at each electrochemical state. From the measured material removal for each process state was used to verify the relationship with finishing time of work piece. Electrochemi

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (22)
Scopus Crossref
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
Evaluation of the level of Some Heavy Metals in Tobacco of Domestic and Imported Cigarette Brands Used in Iraq
...Show More Authors

Smoking-related diseases can be attributed to the inhalation of many different toxins, including heavy metals, which have a host of harmful health effects. The primary objective of this study was to determine whether local and imported cigarette brands used in Iraq , have they elevated levels of metals or not .Three metals Lead (Pb) , Cadmium (Cd) and Chromium(Cr) were determined in tobacco of seventeen brands of imported cigarettes commonly available in Iraq and three Iraqi domestic cigarettes , which were randomly taken from retail market in Baghdad by using flame atomic absorption spectrometry. The produced data of imported and local cigarette brands were discussed and compared together and with studies from elsewhere .The result

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN) Technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
Microbial Contamination in Some Commercial Biscuits in Baghdad City
...Show More Authors

This study has been conducted to know the level of microbial ( bacteria and fungi) contamination in 5 types of biscuits from local markets of Baghdad city. Fifty samples (ten sample for each kind of biscuit) were studed,Two are local,others are Iranian,Turkish,and Holandies. The following results have been achieved :1. The highest number of bacteria was 21.6×103 cell/g in Iranian biscuit while the lowest number was 14.3× 103 cell/g in local biscuit No.1 . The highest number of fungi was 16×103 colony/g and the lowest number was 5.3×103 colony/g in the Iranian and the local biscuit No.1,respectively.2. Staphylococcus aureus was the major bacteria appeared at highest level of 100% in Turkish biscuit. The lowest percentage was found in H

... Show More
View Publication Preview PDF
Crossref (1)
Crossref