In this work, diamond-like carbon (DLC) thin films were prepared from Cyclohexane. Thin films were deposited on quartz substrate by atmospheric pressure Argon plasma jet system. The plasma jet system was applying high voltage sinusoidal waves of frequency 28 kHz and potential difference of 7.5kV peak to peak across the electrodes. The effect of annealing at 400, 500 and 600 °C under vacuum for two hours on optical properties and structural properties of the DLC thin films were investigated. This effect was clarified by X-ray diffraction (XRD), FTIR, UV-Visible absorption, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The X-ray diffraction patterns for the annealing DLC thin films show two broad peaks at 2θ, 26.62° and 51.58° corresponding to (002) and (102) plane of graphite and the broad peaks at 20 43.46° and 73.9° assigned to the (111) and (220) plane of diamond. The FTIR spectrum shows that the increasing in annealing temperature causes increasing in sp3. Scanning electron images show that the DLC nanoparticles have spherical shape with few clusters of particles, and the particles size become small with increasing the temperature, Raman spectroscopy show that the peaks position shifted toward the lower energies when the annealing temperature increase. The optical energy gap (Eg) increased from 2.71to 3.23 eV with increasing the annealing temperature from 400 to 600 °C. It can be concolude that the annealing leads to more diamond-like structure. © 2020 Author(s).
A comparative investigation of gas sensing properties of SnO2 doped with WO3 based on thin film and bulk forms was achieved. Thin films were deposited by thermal evaporation technique on glass substrates. Bulk sensors in the shape of pellets were prepared by pressing SnO2:WO3 powder. The polycrystalline nature of the obtained films with tetragonal structure was confirmed by X-ray diffraction. The calculated crystalline size was 52.43 nm. Thickness of the prepared films was found 134 nm. The optical characteristics of the thin films were studied by using UV-VIS Spectrophotometer in the wavelength range 200 nm to 1100 nm, the energy band gap, extinction coefficient and refractive index of the thin film were 2.5 eV , 0.024 and 2.51, respective
... Show MoreOptical detector was manufactured Bashaddam thermal evaporation technique at room temperature under pressure rays studied characteristics of reactive Scout efficiency quantitative ratio of the signal and the ability equivalent to noise
Experimentation Multi effective and fertile grew human desire to discover new ways to express beauty in artwork .And dabble term experimentation in the performing arts and arts architecture, cinema and television in the test forms and interest in the visual effects and movements seek to establish and beauty and schools of thought in literature and art. This study aims to identify
The research consisted of four chapters, the first of which wasa methodological framework. The problem of research was determined by a question drawn up by the researcher as follows: What are the intellectual contents of science fiction films ?. The main objective of the research was to uncover the intellectual contents of contemporary science fiction films. The most important research terms (content, thought, ideology, science fiction, contemporary) were defined as either the second chapter (the theoretical framework) The second topic was entitled "The Intellectual Contents of Contemporary Science Fiction Films", in which the films of the science fiction and its current intellectual contents were discussed. The third topic included the
... Show MoreCompaction of triticale grain with three moisture contents (8%, 12%, and 16% wet basis) was measured at five applied pressures (0, 7, 14, 34, and 55 kPa). Bulk density increased with increasing pressure for all moisture contents and was significantly (p < 0.0001) dependent on both moisture content and applied pressure. A Verhulst logistic equation was found to model the changes in bulk density of triticale grain with R2 of 0.986. The model showed similar beha
The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show More
Detection of virulence gene agglutinin-like sequence (ALS) 1 by using molecular technology from clinical samples (