This study aims to analyze the spatial distribution of the epidemic spread and the role of the physical, social, and economic characteristics in this spreading. A geographically weighted regression (GWR) model was built within a GIS environment using infection data monitored by the Iraqi Ministry of Health records for 10 months from March to December 2020. The factors adopted in this model are the size of urban interaction areas and human gatherings, movement level and accessibility, and the volume of public services and facilities that attract people. The results show that it would be possible to deal with each administrative unit in proportion to its circumstances in light of the factors that appear in it. So, there will not be a single treatment for all areas with different urban characteristics, which sometimes helps not to stop social and economic life due to the imposition of a comprehensive ban on movement and activities. Therefore, there will be other supportive policies other than the ban, depending on the urban indicators for each region, such as reducing external movement from it or relying on preventing public activities only.
The rapid spread of novel coronavirus disease
(COVID19) throughout the world without available
specific treatment or vaccine necessitates alternative
options to contain the disease. Historically, children
and pregnant women were considered high-risk
population of infectious diseases but rarely have been
spotlighted nowadays in the regular COVID-19
updates, may be due to low global rates of incidence,
morbidity, and mortality. However, complications did
occur in these subjects affected by COVID-19. We
aimed to explore the latest updates of
immunotherapeutic perspectives of COVID-19
patients in general population and some added details
regarding pediatric and obstetrical practice.
Immune system boo
The rapid spread of novel coronavirus disease(COVID19) throughout the world without availablespecific treatment or vaccine necessitates alternativeoptions to contain the disease. Historically, childrenand pregnant women were considered high-riskpopulation of infectious diseases but rarely have beenspotlighted nowadays in the regular COVID-19updates, may be due to low global rates of incidence,morbidity, and mortality. However, complications didoccur in these subjects affected by COVID-19. Weaimed to explore the latest updates ofimmunotherapeutic perspectives of COVID-19patients in general population and some added detailsregarding pediatric and obstetrical practice.Immune system boosting strategy is one of therecently emerging issue
... Show MoreSufficient high-quality data are unavailable to describe the management approach and guideline of COVID-19 disease in pediatric and adolescent population which may be due to mild presentation in most of cases and less severe complications than older ages.
World Health Organization was concerned with the establishment of an approved guideline to manage the increasing number of COVID-19 patients worldwide aiming to prevent or lessen COVID-19 global burden.
The clinical features have a wide spectrum starting from uncomplicated mild illness, mild-moderate pneumonia, severe pneumonia, acute respiratory distress syndrome, sepsis, septic shock, and multisystem inflammatory syndrome in children.
Many important definitions
... Show MoreIn this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients
... Show MoreThe objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.
Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written
... Show MoreThe aim of the research is to identify an appropriate training method that raises the levels of immune globulins (IgA, IgM, IgG) and white blood cells and the effect of training by (HIT) method using resistance (weights) as a training curriculum that increases immunity and ensures the continuation of the pills after the return of activity from the stone The response to the Covid-19 epidemic among amateur weightlifters, the researchers relied on the method of trace analysis in an experimental way by conducting a pre-, medial and post-test with the same experimental one agroup on a sample of amateur weightlifters in the Fury private hall for weightlifting and body building in Adhamiya, the number of sample members reached (15 players) who int
... Show MoreIn this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.
Conditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.