In this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid forecasting models ARIMA-ANFIS, ARIMA-ANFIS-PSO, and ARIMA-ANFIS-GWO and the results showed the superiority of the ARIMA-ANFIS-PSO model.
A large number of researchers had attempted to identify the pattern of the functional relationship between fertility from a side and economic and social characteristics of the population from another, with the strength of effect of each. So, this research aims to monitor and analyze changes in the level of fertility temporally and spatially in recent decades, in addition to estimating fertility levels in Iraq for the period (1977-2011) and then make forecasting to the level of fertility in Iraq at the national level (except for the Kurdistan region), and for the period of (2012-2031). To achieve this goal has been the use of the Lee-Carter model to estimate fertility rates and predictable as well. As this is the form often has been familiar
... Show MoreThe research involves preparing gold nanoparticles (AuNPs) and studying the factors that influence the shape, sizes and distribution ratio of the prepared particles according to Turkevich method. These factors include (reaction temperature, initial heating, concentration of gold ions, concentration and quantity of added citrate, reaction time and order of reactant addition). Gold nanoparticles prepared were characterized by the following measurements: UV-Visible spectroscopy, X-ray diffraction and scanning electron microscopy. The average size of gold nanoparticles was formed in the range (20 -35) nm. The amount of added citrate was changed and studied. In addition, the concentration of added gold ions was changed and the calibration cur
... Show MoreNew evidence on nanotechnology has shown interest in the creation and assessment of nanoparticles for cancer treatment. Worldwide, a wide range of tumor-targeted approaches are being developed to reduce side effects and boost the efficacy of cancer therapy. One strategy that shows promise is the use of metallic nanoparticles to increase the radio sensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. In this study, atmospheric plasma was created using argon gas to create Au NPs using the plasma jet scheme, and their ability to induce apoptosis as an anticancer mechanism was tested. Aqueous gold tetrachloride salts (HAuCl4·3H2O) ere used to produce gold nanopartic
... Show MoreIn this work, the study of
The paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w
... Show MoreEnergy efficiency is a significant aspect in designing robust routing protocols for wireless sensor networks (WSNs). A reliable routing protocol has to be energy efficient and adaptive to the network size. To achieve high energy conservation and data aggregation, there are two major techniques, clusters and chains. In clustering technique, sensor networks are often divided into non-overlapping subsets called clusters. In chain technique, sensor nodes will be connected with the closest two neighbors, starting with the farthest node from the base station till the closest node to the base station. Each technique has its own advantages and disadvantages which motivate some researchers to come up with a hybrid routing algorit
... Show MoreSoftware testing is a vital part of the software development life cycle. In many cases, the system under test has more than one input making the testing efforts for every exhaustive combination impossible (i.e. the time of execution of the test case can be outrageously long). Combinatorial testing offers an alternative to exhaustive testing via considering the interaction of input values for every t-way combination between parameters. Combinatorial testing can be divided into three types which are uniform strength interaction, variable strength interaction and input-output based relation (IOR). IOR combinatorial testing only tests for the important combinations selected by the tester. Most of the researches in combinatorial testing appli
... Show More