In this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid forecasting models ARIMA-ANFIS, ARIMA-ANFIS-PSO, and ARIMA-ANFIS-GWO and the results showed the superiority of the ARIMA-ANFIS-PSO model.
In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show MoreAbstract
Pneumatic processes sequence (PPS) is used widely in industrial applications. It is common to do a predetermined PPS to achieve a specific larger task within the industrial application like the PPS achieved by the pick and place industrial robot arm. This sequence may require change depending on changing the required task and usually this requires the programmer intervention to change the sequence’ sprogram, which is costly and may take long time. In this research a PLC-based PPS control system is designed and implemented, in which the PPS is programmed by demonstration. The PPS could be changed by demonstrating the new required sequence via the user by following simple series of manual steps without h
... Show MoreThe convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.
In this study, gold nanoparticles (AuNPs) were synthesized using a plasma jet system at different exposure times. Using ultraviolet, visible spectra, X-ray diffraction, the nanoparticles were characterized (XRD). A Plasmon surface resonance concentrated at 530, 540, and 533 nm for the prepared AuNPs. The pattern of XRD showed that the extreme peaks of the film reflect crystalline existence. The face-centered cubic structure of the gold nanoparticles was prepared for all samples, with an average crystallite size of 25-40 nm. The effect of AuNPs in vivo on liver function levels was measured. For all doses, we notice an increase in the ranks of liver function in the blood during the period of dosing, and it begins to decrease when the dosi
... Show MoreAbstract: The development of highly sensitive sensors has become an efficient field of research. In this work, an ArF Excimer laser of 193 nm with a maximum pulse energy of 275 mJ, 15 ns pulse duration and a repetition rate of 1 Hz is utilized to form a Laser Induced Periodic Surface Structures (LIPSS) of three different morphologies (nanochains, contours, grooves) on surface of CR39 polymer at a fluence range above the ablation threshold (250 mJ/cm2). The laser ablated polymer surface is then Surface Enhanced Raman Scattering (SERS) activated by deposition of a gold layer of 30 nm thickness. The capability of the produced substrate for surface enhanced Raman scattering is evaluated through thiophenol as an analyte molecule. It is observ
... Show MoreThe purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreThere are many methods of searching large amount of data to find one particular piece of information. Such as find name of person in record of mobile. Certain methods of organizing data make the search process more efficient the objective of these methods is to find the element with least cost (least time). Binary search algorithm is faster than sequential and other commonly used search algorithms. This research develops binary search algorithm by using new structure called Triple, structure in this structure data are represented as triple. It consists of three locations (1-Top, 2-Left, and 3-Right) Binary search algorithm divide the search interval in half, this process makes the maximum number of comparisons (Average case com
... Show MoreThe study investigates the relationship between the volatility of the Iraqi Stock Exchange Index (ISX), and the volatility of global oil prices benchmarks, Brent and West Intermediate Texas (WTI), in additional to the Iraqi Oil, Basra Crude Light (BSL) which represents the most exported Iraqi oil and the major influential factor on the Iraqi governmental revenues. Using monthly data covering the period: 1/2005-12/1205, econometrical and technical tools represented by Co-incretion, Vector Error Correction Model – VECM, Granger Causality, and Bollinger band were employed in order to explore the relationship between the variables.
The econometric analysis revealed the impact of the oil prices volatility on
... Show More