Infection with the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. Infection with Toxoplasma may associate with miscarriage in many pregnant women due to infection. In this study, the level of lutetropic hormone (LTH), folliclestimulating hormone (FSH) and luteinizing hormone (LH) was measured in pregnant women suffering from toxoplasmosis using mini-VIDAS®technique. Results showed that pregnant women have high concentration of both LTH and FSH hormone(10.80 ± 6.53) ng/ml and (9.51 ± 2.40) μIU/ml respectively, while the concentration of LH hormone was lower than normal(4.49 ± 0.56) μIU/ml. Such finding is to suggest that infection with T. gondii is interfering with these hormones in pregnant women.
The aim of the study is to study the quality of services in a sample of the municipalities of Baghdad governorate and identify the deviations in their operations and provide solutions to address the causes of deviations. The research field aims at the same activity related to municipal services and their quality and analysis using some tools for continuous improvement to identify the authorities responsible for the delay and quality of services. In the future, the importance of research is shown by the use of these tools and their use and their application to the data of the directorates (sample of the study) to diagnose and treat problems, especially that they include statistical methods that are clear and easy to understand the
... Show MoreThe possible effect of the collective motion in heavy nuclei has been investigated in the framework of Nilson model. This effect has been searched realistically by calculating the level density, which plays a significant role in the description of the reaction cross sections in the statistical nuclear theory. The nuclear level density parameter for some deformed radioisotopes of (even- even) target nuclei (Dy, W and Os) is calculated, by taking into consideration the collective motion for excitation modes for the observed nuclear spectra near the neutron binding energy. The method employed in the present work assumes equidistant spacing of the collective coupled state bands of the considered isotopes. The present calculated results for f
... Show MoreThe study is aimed at social support to the students of the College of Education for women (The research sample) and measuring the quality of life at students of the College of Education for women (The research sample) And to identify the relationship between social support and quality of life of students of the College Education for Women and research sample consisted of 200 students The adoption of the resolution as a tool for data collection and the most important results of the search results that the students of the College Education for Women have social support. In other words, parents and friends are supporting the students. The students have the quality of life any positive meaning to life and that when a person has a quality of
... Show MorePurpose: To identify the risk factors of urinary incontinency for menopausal women.
Methodology: A descriptive analytic study was conducted to identify the risk factor for urinary incontinency
and selected non-probability sample (purposive sample) from (200) menopausal women (45-65) who have
urinary incontinence as visitors and caregiver women who attend at Hila surgical teaching hospital during the
period 1/11/2010-30/3/2011. Questionnaire format used for data collection was designed and constructed
after reviewing related literatures and previous studies and consists of the following variables: Demographic
and reproductive characteristics of menopausal women who suffers from urinary incontinence
Results: The study
Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreDetermining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreWith the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show More