The adsorption process of reactive blue 49 (RB49) dye and reactive red 195 (RR195) dye from an aqueous solutions was explored using a novel adsorbent produced from the sunflower husks encapsulated with copper oxide nanoparticle (CSFH). Primarily, the features of a CSFH, such as surface morphology, functional groups, and structure, were characterized. It was determined that coating the sunflower husks with copper oxide nanoparticles greatly improved the surface and structural properties related to the adsorption capacity. The adsorption process was successful, with a removal efficiency of 97% for RB49 and 98% for RR195 under optimal operating conditions, contact time of 180 min, pH of 7, agitation speed of 150 rpm, initial dye concentration
... Show MoreThe new complexes including Cu(II), Co(II), Ni(II), Pt(IV), and Pd(II) metals with 4,4'-(((1E,1'E)-1,4-phenylenebis(methaneylylidene))bis(azaneylylidene))bis(5-(4-chlorophenyl)-4H-1,2,4-triazole-3-thione) have been synthesized of utilizing us polystyrene (PS) photostability. The supplement (0,5 w / v%) was for the production of polystyrene ( PS) in the form of tetrahydrofuran (THF). Polystyrene films were exposing irradiation (250 – 380 nm) absorption light intensity of 6.02 x 10-9 ein dm-3 s-1 at room temperature, through the changes that occur to each of viscosity average molecular weight (Mv), main chain scission (S), degree of polymerization (DPn), weight loss %, hydroxyl index (lOH), carbonyl index (ICo) determined the photo stabiliz
... Show MoreZinc oxide nanoparticles sample is prepared by the precipitation method. This method involves using zinc nitrate and urea in aqueous solution, then (AgNO3) Solution with different concentrations is added. The obtained precipitated compound is structurally characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). The average particle size of nanoparticles is around 28nm in pure, the average particle size reaches 26nm with adding AgNO3 (0.05g in100ml =0.002 M) (0.1g in100ml=0.0058M), AgNO3 (0.2g in 100ml=0.01M) was 25nm. The FTIR result shows the existence of -CO, -CO2, -OH, and -NO2- groups in sample and oxides (ZnO, Ag2O).and used an
... Show MoreThe integer simulation and development finite impulse response (FIR) filters taking into account the possibilities of their realization on digital integer platforms are considered. The problem statement and solution of multifunctional synthesis of digital FIR filters such a problem on the basis of the numerical methods of integer nonlinear mathematical programming are given. As an several examples, the problem solution of synthesis FIR-filters with short coefficient word length has been given. The analysis of their characteristics is resulted. The paper discusses issues of modeling and synthesis of digital FIR filters with provision for the possibilities of their implementation on digital platforms with integer computation arithme
... Show Moren this study, Cr−Mo−N thin films with different Mo contents were synthesised via closed field unbalanced magnetron sputtering ion plating. The effects of Mo content on the microstructure, chemical bonding state, and optical properties of the prepared films were investigated by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, and ultraviolet-visible spectrophotometry. XRD results determined the face centered cubic (fcc) structure of pure CrN film. The incorporation of molybdenum (Mo) in the CrN matrix was confirmed by both XRD and XPS analyses. The CrMoN coatings demonstrate various polycrystalline phases including CrN, γ-Mo2N, Cr with oxides layers of MoO3, CrO3,
... Show MoreIn this study, Cr−Mo−N thin films with different Mo contents were synthesised via closed field unbalanced magnetron sputtering ion plating. The effects of Mo content on the microstructure, chemical bonding state, and optical properties of the prepared films were investigated by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, and ultraviolet-visible spectrophotometry. XRD results determined the face centered cubic (fcc) structure of pure CrN film. The incorporation of molybdenum (Mo) in the CrN matrix was confirmed by both XRD and XPS analyses. The CrMoN coatings demonstrate various polycrystalline phases including CrN, γ-Mo2N, Cr with oxides layers of MoO3, CrO3
... Show More