Confocal microscope imaging has become popular in biotechnology labs. Confocal imaging technology utilizes fluorescence optics, where laser light is focused onto a specific spot at a defined depth in the sample. A considerable number of images are produced regularly during the process of research. These images require methods of unbiased quantification to have meaningful analyses. Increasing efforts to tie reimbursement to outcomes will likely increase the need for objective data in analyzing confocal microscope images in the coming years. Utilizing visual quantification methods to quantify confocal images with naked human eyes is an essential but often underreported outcome measure due to the time required for manual counting and estimation. The current method (visual quantification methods) of image quantification is time-consuming and cumbersome, and manual measurement is imprecise because of the natural differences among human eyes’ abilities. Subsequently, objective outcome evaluation can obviate the drawbacks of the current methods and facilitate recording for documenting function and research purposes. To achieve a fast and valuable objective estimation of fluorescence in each image, an algorithm was designed based on machine vision techniques to extract the targeted objects in images that resulted from confocal images and then estimate the covered area to produce a percentage value similar to the outcome of the current method and is predicted to contribute to sustainable biotechnology image analyses by reducing time and labor consumption. The results show strong evidence that t-designed objective algorithm evaluations can replace the current method of manual and visual quantification methods to the extent that the Intraclass Correlation Coefficient (ICC) is 0.9.
Most of us are tired of the circumstances that surround us because of their deficiency, deprivation, and sullenness, even though troubles and pains are the soil in which the seeds of strong personality sprout.
The content of the research is summed up in the fact that there is no need to frown, so let our face be free, and our word good and tolerant, so that we can be the most loving people of those who give them, and the Messenger of God (may God’s prayers and peace be upon him and his family) was known to be the heaviest concerns of people, but he was most smiling of people, by smiling, we buy lives, so we should get used to it, because that gives us hope and finds the world in our hands, an
... Show MoreThe makers of strife exist in every era and time. They differ in how these temptations are created and the methods used in doing so. In our modern era, they are more; This is due to the presence of information technology and its easy availability at their fingertips, as well as the spread of social networking sites, which are rapidly spreading among ignorant groups and groups that are deficient in their use. Which led the makers of sedition to exploit these matters and create various temptations and spread them among peoples and societies. Today, we cannot predict the future of humanity in light of this huge amount of temptation. What the Holy Qur’an mentioned about the types of temptations in its noble verses and their embodiment in seve
... Show MoreLasmiditan (LAS) was formulated as a nanoemulsion based in situ gel (NEIG)with the aim of improving its oral bioavailability via application intranasally. The solubility of LAS in oils, emulsifiers, and co-emulsifiers was determined to identify nanoemulsion (NE)components. Phase diagrams were constructed to identify the area of nanoemulsification. LAS NE was formulated using the spontaneous nanoemulsification method. Four NEs (F19, F24, F31, and F34) containing 7-15 % oleic acid (OA) as an oily phase, 40-55% labrasol (LR), and transcutol (TC) as emulsifier mixture at (1:1), (2:1), (3:1), and (1:2) ratio with 30-53 % (w/w) aqueous phase, having suitable optical transparency of 95–98%, globule size of 104-140 nm and polydisper
... Show MoreIn a resource-limited world, there is an urgent need to develop new economic models, from the traditional unsustainable industrial model of product consumption and disposal, to a new model based on the concepts of sustainability in its comprehensive sense, the so-called circular economy, using fewer resources in manufacturing processes and changing practices in product disposal to waste, by removing its use, recycling and manufacturing to start another manufacturing process. In an era of intense competition in domestic and global markets, the importance of the circular economy is highlighted in its ability to strengthen the competitiveness of enterprises in those markets, by reducing the cost and increasing the quality of the pro
... Show MoreTo expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show MoreThe main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isola
... Show More