Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show MoreIn this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
THE EFFECT OF SPREACL of KNOWLEDGE ON ETHICS
3\URO\VLVKDVEHHQFRQVLGHUHGDPHWKRGIRUUHFRYHULQJWKHSRZHUIURPFRPELQHGPLFURDOJDELRPDVVKHUH QH[WH[HFXWLQJKHDWSUREHRIRULQYROYLQJVRXQGZDYHVZLWKDIUHTXHQF\DERYHWKHXSSHUOLPLWRIKXPDQKHDULQJDVD SUHWUHDWPHQWWRLQFUHDVHWKHELRFUXGH\LHOG3\URO\VLVRIPL[HGPLFURDOJDHZDVFDUULHGRXWLQDEDWFKUHDFWRUPDGH XS RI VWHHO DW DWHPSHUDWXUH UDQJH &R QLWURJHQ JDV ZDV XVHG DV VZHHS JDV IRU PDLQWDLQLQJ R[\JHQ IUHH DWPRVSKHUHLQWKHS\URO\VLVWKHUHVXOWVVKRZWKDWWKHXVLQJXOWUDVRQLFSUREHIRUERWKIUHTXHQF\ .+]LQFUHDVH WKHELRFUXGH\LHOGIURPWRDQGUHVSHFWLYHO\DW&R WKHWKHUPDOGHJUDGDWLRQWHPSHUDWXUHRI PLFURDOJDHDUH VWXGLHG XVLQJ7*$DOVRWKH UHVXOWV VKRZWKDWWKHDVKFRQWHQWDIWHUDSSO\LQJ XOWUDVRQLF VRXQGDVD SUHWUHDWPHQWIRUERWKIUHTXHQF\ .+]ZHUHUHGXFHGIURPWR
... Show MoreAbstract
The research aims to determine the nature of the Iraqi market in terms of banking financial stability and the extent impact of the operational efficiency on it, Accordingly, chosen 15 relational banks were chosen as an intentional sample that could represent the Iraqi banking system for the period 2010-2020. The operational efficiency variable was measured according to the data envelope model, and banking financial stability used CAMELS model which includes five indicators (capital adequacy, asset quality, management quality, profitability, and liquidity), so for testing the research hypotheses used the random regression model by adopting the S
... Show More