In this research velocity of moving airplane from its recorded digital sound is introduced. The data of sound file is sliced into several frames using overlapping partitions. Then the array of each frame is transformed from time domain to frequency domain using Fourier Transform (FT). To determine the characteristic frequency of the sound, a moving window mechanics is used, the size of that window is made linearly proportional with the value of the tracked frequency. This proportionality is due to the existing linear relationship between the frequency and its Doppler shift. An algorithm was introduced to select the characteristic frequencies, this algorithm allocates the frequencies which satisfy the Doppler relation, beside that the tra
... Show MoreFace recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show MoreThe implementation of decentralization in Iraq was asymmetrical, leading to different forms and paces of implementation. Comparing four cases of Basra, Kirkuk, Nineveh, and Sulaymaniyah indicate that these cases differ in their political stability and autonomy in a way that led to a different forms of decentralization. This paper argues that the higher the level of political autonomy from the federal government, the more efficient the governance model, and the more efficient the governance model, the more legitimate the system (trust), and the more legitimate a system, the more accountable elected officials. Therefore, it recommends reforming the institutional setup of decentralization by having districts, instead of provinces, as t
... Show MoreThe implementation of decentralization in Iraq was asymmetrical, leading to different forms and paces of implementation. Comparing four cases of Basra, Kirkuk, Nineveh, and Sulaymaniyah indicate that these cases differ in their political stability and autonomy in a way that led to a different forms of decentralization. This paper argues that the higher the level of political autonomy from the federal government, the more efficient the governance model, and the more efficient the governance model, the more legitimate the system (trust), and the more legitimate a system, the more accountable elected officials. Therefore, it recommends reforming the institutional setup of decentralization by having districts, instead of provinces, as the bu
... Show MoreThe aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreGroupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
Background: e cerebellum is divided into two hemispheres and contains a narrow midline zone called thevermis. A set of large folds are conventionally used to divide the overall structure into ten smaller "lobules". evermis receives fibres from the trunk and proximal portions of limbs, But the question is that does the cerebellum have the same measurementvalues in males and females of the same age?Material and method: e present study used 80 sectional brain MRI images (40: males, 40: females); 35-50 years old as indices of size for thevermian structures of the Cerebellum. is middle age group was taken because as known generally it could be neither an age of growth as inthe young nor of atrophy as in old individuals. e aim rega
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show More