Background: Breast cancer (BC) is the most widespread cancer among women worldwide. Its incidence and mortality rates have risen in the previous three decades as a result of changes in risk factor profiles, improved cancer registry, and cancer detection. Objective: The study's goals were to establish if Ki-67 could be used as a potential marker in serum of cancer disease patients as well as their interaction with vascular endothelial growth factor (VEGF) and ES in various stages of breast cancer to assess their function in the progression of BC. Materials and Methods: The levels of Ki-67, VEGF and endostatin (ES) in serum were assessed by commercial enzyme linked immunosorbent assay (ELISA) kits in 60 women diagnosed with breast cancer (age range 33–80 yrs.) and 30 agematched healthy controls. Two groups of breast cancer patients: groups 1 consisted of stage II (Low level) and groups 2 consisted of patients in stage III and IV (High level). Results: The results showed a significant increase of Ki-67 and VEGF in BC patients as related to healthy control with increases in patients in advanced stage. The data revealed that the level of ES was much lower in patients with low-stage (stage II) compared to the group of control, but it was significantly higher in women with advanced-stage of BC. Conclusions: The Ki-67, VEGF, and ES levels in the serum of studied groups may be a good marker in the progression of BC.
In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
This study unveils the ideologies of women empowerment encoded in the Mona Lisa Smile movie (2003). It reveals how the stereotypical image of women born only to be wives and do the duties of upbringing and housework is challenged. Katherine Ann Watson (Julia Roberts), the main character in the movie, wants to make a difference in the next generation of women. She rejects the imposed traditional ideologies. Linguistically, she opposes conventional thinking and seeks to persuade her students that life is about more than getting married. The primary focus of this study is to examine and clarify how the characters’ linguistic choices convey their ideologies concerning the notion of women empowerment. To do this, the researchers apply
... Show MoreBackground: Lung cancer is a common disease for patients over the age of 50 years, especially males due to smoking habits. This study aimed to compare the modulation complexity score (MCS) for the advanced treatment planning techniques which the intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Materials and Methods: Thirty patients who had non-small lung cancerous tumors on their left side participated in this study. The range ages were 68 to 98 years, the heights were between 151 and 182cm and they having weights from 46 to 79 kg. For Each patient will create two plans dial using two different techniques, which will be Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreThis study focused on extracting the outer membrane nanovesicles (OMVs) from Escherichia coli BE2 (EC- OMVs) by ultracentrifugation, and the yield was 2.3mg/ml. This was followed by purification with gel filtration chromatography using Sephadex G-150, which was 2mg/ml. The morphology and size of purified EC-OMVs were confirmed by transmission electron microscopy (TEM) at 40-200 nm. The nature of functional groups in the vesicle vesicle was determined by Fourier transforms infrared spectroscopy (FT-IR) analysis. The antitumor activity of EC-OMVs was conducted in vitro by MTT assay in human ovarian (OV33) cancer cell line at 24,48 and 96hrs. The cytotoxicity test showed high susceptibility to the vesicles in ovarian compared to normal
... Show MoreProduction and characterization of methionine γ- lyase from Pseudomonas putida and its effect on cancer cell lines
Cocoon of larva
Background: This study aimed to determine the cephalometric values of tetragon analysis on a sample of Iraqi adults with normal occlusion. Material and methods: Forty digital true lateral cephalometric radiographs belong to 20 males and 20 females having normal dental relation were analyzed using AutoCAD program 2009. Descriptive statistics and sample comparison with Fastlicht norms were obtained. Results: The results showed that maxillary and mandibular incisors were more proclined and the maxillary/mandibular planes angle was lower in Iraqi sample than Caucasian sample. Conclusion: It's recommended to use result from this study when using tetragon analysis for Iraqis to get more accurate result.