Objective: The present study was aimed to develop a pH-triggered in situ gel for local release of lidocaine hydrochloride (lidocaine HCL) in the buccal cavity to improve the anesthetic effect of this amino amide drug which has very high water solubility. The formulations were introduced to the oral cavity as a spray to improve compliance and for easier administration.Methods: In this work, two grades of carbopol (934 and 940)-based in situ gel spray were designed. The formulations containing lidocaine HCl 5% were prepared by mixing different concentrations of carbopol with xanthan gum. Eight formulations were investigated and evaluated for gelation capacity, spray angle, volume of solution delivered per each actuation, rheological properties, and release kinetic model. Similarity factor (f2) was used for the comparison of dissolution profiles.Results: The prepared formulations undergo gelation after it had been actuated to the buccal cavity as a spray solution. The results showed that, as the concentration of polymer was increased, the release of drug decreased and the viscosity increased for both grades. The spray angle and volume of solution delivered per each actuation varied according to the composition of each formulation. The in situ gel containing 0.3% carbopol 934 and 0.2% xanthan gum regarded as a better candidate which had a good gelation and release property compared to other formulations. Drug release from optimized in situ gel spray followed Korsmeyer–Peppas model and was mediated by Fickian diffusion mechanism.Conclusion: Lidocaine HCl-loaded pH-sensitive in situ gel was successfully developed using carbopol 934 as polymer to be applied to the buccal cavity as spray solution for more effective anesthetic effect and painless treatment.
Dissolution of gypsum rock in water is significant, which may result in hydrocarbon reservoir formation and evaporate deposits. However, the complexity of the gypsum dissolution process is still of interest because of its uncleanness that requires more critical analysis. The objectives of this experimental study are emphasis on the dissolution characteristics of gypsum rock under room temperature and by various types of water; namely: deionized, tap, fresh, acidic, well, and normal rainwatre. In addition, the influences of dissolution on gypsum rock's mechanical and physical characteristics. Gypsum rock was obtained from Agjalar area, in the southwest of Sulaymaniyah city, Northern Iraq. Experimental results show that we
... Show MoreThe refractive index sensors based on tapered optical fiber are attractive for many industries due to sensing capability in a variety of application. In this paper, we proposed a refractive index sensor based on multicore fiber (MCF) sandwiched between two standard single mode fibers (SMF). The sensor consisting of three sections, SMF- MCF-SMF is structurally simple and can be easily produced by joining these parts. The MFC contains seven cores and these cores are surrounded by a single cladding. The sensing region is obtained by tapering the MCF section where the evanescent field is generated. The single mode propagating along the SMF is stimulated at the first joint and is coupled to the cladding modes. These modes interfere with the core
... Show MoreThis study introduces a highly sensitive trapezium-shaped PCF based on an SPR refractometric sensor with unique design features. The structure of a sensor was designed and analyzed using COMSOL Multiphysics v5.6 based on Finite Element Method (FEM) with a focus on investigating the influence of various geometric parameters on its performance. The two channels were coated with a metallic gold layer to provide chemical stability, and a thin layer of TiO₂ improved the gold's adhesion to the fiber. The findings indicate that the proposed sensor achieves maximum amplitude and wavelength sensitivities of 1,779 RIU⁻¹ and 30,500 nm/RIU, respectively, with corresponding resolutions of 3.2
Background: The success and maintenance of indirect dental restorations is closely related to the marginal accuracy, which is affected by many factors like preparation design, using of different fabrication techniques, and the time of taking final impression and pouring it. The purpose of this in vitro study was to evaluate the effect of different pouring time of conventional impression on the vertical marginal gap of full contour zirconia crowns in comparison with digital impression technique. Materials and Methods: Forty sound recently extracted human permanent maxillary first premolar teeth of comparable size and shape were collected. Standardized preparation of all teeth samples were carried out to receive full contour zirconia crown re
... Show MoreBackground: The success and maintenance of indirect dental restorations is closely related to the marginal accuracy, which is affected by many factors like preparation design, using of different fabrication techniques, and the time of taking final impression and pouring it. The purpose of this in vitro study was to evaluate the effect of different pouring time of conventional impression on the vertical marginal gap of full contour zirconia crowns in comparison with digital impression technique. Materials and Methods: Forty sound recently extracted human permanent maxillary first premolar teeth of comparable size and shape were collected. Standardized preparation of all teeth samples were carried out to receive full contour zirconia crown re
... Show MoreThe sol-gel route using an agar gel with calcium nitrate and phosphate solution as starting materials for producing hydroxyapatite (HAP). The product formed were needle like, zigzag and straight fibres. The fibrous products on sintering transformed into stoichiometric HAP with a biological Ca/P ratio of 1.67. The influences of pH, temperature, nature of base and phosphate solution on the growth of fibrous HAP were studied. The pH of the solution was found to greatly influence the growth rate and morphology of the resultant product. The optimum gel temperature was found to be 60oC and sintering temperature of 900oC for 1 hour. The crystalline, thermal, functional and morphological characteristics of the fibrous HAP were investigated.
The influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu
... Show MoreOne of the most important challenges facing the development of laser weapons is represented by the attenuation of the laser beam as it passed through the layers of atmosphere.This paper presents a theoretical study to simulate the effect of turbulence attenuation and calculates the decrease of laser power in Iraq. The refractive index structure C_n^2 is very important parameter to measure the strength of the atmospheric turbulence, which is affected by microclimate conditions, propagation path, season and time in the day. The results of measurements and predictions are based on the Kolmogorov turbulence theory. It was demonstrated by simulations that the laser weapons in Iraq were severely affected due to the large change in temperatures,
... Show More