The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb−1, respectively, while the limit of detection for both ions was 0.6 ppb. These findings support the feasibility and potential of the sensor configuration towards paving future advancement in As detection systems.
Abstract:
This study aims to identify the level of patients’ satisfaction among a sample of hospitalized patients in the targeted hospital (Al-Kindy Teaching Hospital, and Al-Yarmook Teaching Hospital). Moreover, this study highlights the reality of services for patients, especially in the targeted governmental teaching hospitals. The Patient Satisfaction with Nursing Care (PSNCS) has been measured in these hospitals through the revised scale by Tang et al, (2013).This scale includes four major domains; Health Information (5 items), Influencing Support (4 items), Decision Control (4 items), Specialized Technical Competence (7 items). The method of surveying patients’ opinions about the degree
... Show MoreThis mini review provides an overview of methods for manufacturing expanded graphite (EGT) and the use of its composites with metal oxides in the field of photodegradation of dyes. Dyes from textile manufacturing represent a significant environmental pollution problem in waterways worldwide, highlighting the need for environmentally friendly and efficient technologies to remove dyes from industrial and local wastewater. Photodegradation technologies offer a low-cost, sustainable solution with minimal secondary pollution. Carbon-based materials, such as expanded graphite, are advantageous in enhancing catalytic activity. Accordingly, this review will explore the different fabrication techniques of expanded graphite and summarize the recent d
... Show MoreAims: This study was conducted to assess the effect of the addition of yttrium oxide (Y2O3) nanoparticles on the tensile bond strength, tear strength, shore A hardness, and surface roughness of soft-denture lining material. Materials and Methods: Y2O3 NPs with 1.5 and 2 wt.% were added into acrylic-based heat-cured soft-denture liner. A total of 120 specimens were prepared and divided into four groups according to the test to be performed (tensile bond strength, tear strength, surface hardness, and surface roughness). Results: There was a highly significant increase in tensile bond strength between the soft liner and the acrylic denture base, tear strength, and hardness at both concentrations as compared to the control group, whereas ther
... Show MoreThe rise of antibiotic-resistant bacteria necessitates the exploration of novel antimicrobial agents. Yttrium oxide nanoparticles (Y₂O₃) have shown potential due to their unique physicochemical properties and antibacterial activities against various pathogens. This study investigates the cytotoxic and antibacterial effects of Y₂O₃ nanoparticles against Serratia fonticuli and Citrobacter koseri, bacteria isolated from cholangitis patients. Bacterial strains were isolated from bile specimens and confirmed using standard microbiological techniques. The methods of X-ray diffraction (XRD), (SEM), and Frequency transform-infrared spectroscopic (FT-IR) were used to characterize YO₃ particles. Using a microdilution technique, the minimum
... Show MorePreviously many properties of graphene oxide in the field of medicine, biological environment and in the field of energy have been studied. This diversity in properties is due to the possibility of modification on the composition of this Nano compound, where the Graphene oxide is capable of more modification via addition other functional groups on its surface or at the edges of the sheet. The reason for this modification possibility is that the Sp3 hybridization (tetrahedral structure) of the carbon atoms in graphene oxide, and it contains many oxygenic functional groups that are able to reac with other groups. In this research the effect of addition of some amine compounds on electrical properties of graphene oxide has been studied by the
... Show MoreAbstract Background: The daily usage of maxillofacial prostheses causes them to mechanically deteriorate with time. This study was aimed to evaluate the reinforcement of VST50F maxillofacial silicone by using yttrium oxide (Y2O3) nanoparticles (NPs) to resist aging and mechanical deterioration. Materials and Method: Y2O3 NPs (30–45nm) were loaded into VST50F maxillofacial silicone in two weight percentages (1 and 1.5 wt%), which were predetermined in a pilot study as the best rates for improving tear strength with minimum increase in hardness values. A total of 120 specimens were prepared and divided into the control and experimental groups (with 1 and 1.5 wt% Y2O3 addition). Each group included 40 specimens, 10 specimens for each paramet
... Show MoreTo produce Zinc Oxide NanoParticles, ZnO-NPs, different methods can be used. However, the utilization of Liquid-Phase Pulsed Laser Ablation, LP-PLA, methodology of three distinct environment of aqueous using pure zinc plate will be one of the approaches for this job. Thus, in this work, concentrates on the influence of the results after employing some changes on the environment in other words, the influence of the NPs size and/or the NPs availability/appearance. Cetyltrimethylammonium Bromide, CTAB, is one of the three surfactants that have been used in the water-based solution. That is, the Sodium Dodecyl Sulfate, SDS, besides the Distilled Water, DW, the three surfactants will be ready when the molarity of the DW is around 10− 3 M. Th
... Show MoreCopper oxide thin films were deposited on glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The thickness of the thin films was around 0.43?m.Copper oxide thin films were annealed in air at (200, 300 and 400°C for 45min.The film structure properties were characterized by x-ray diffraction (XRD). XRD patterns indicated the presence of polycrystalline CuO. The average grain size is calculated from the X-rays pattern, it is found that the grain size increased with increasing annealing temperature. Optical transmitter microscope (OTM) and atomic force microscope (AFM) was also used. Direct band gap values of 2.2 eV for an annealed sample and (2, 1.5, 1.4) eV at 200, 300,400oC respect
... Show More