Commercial graphite (CGT) powder was used as an adsorbent surface for cationic dye, Janus green (JG), from aqueous solutions. This study aims to highlight the practical significance of using inexpensive CGT as an efficient adsorbent for the removal of JG dye from industrial wastewater. CGT was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The adsorption process was investigated by examining parameters like the weight of the adsorbent, contact time, and temperature. Pseudo-second-order kinetic (PSO), pseudo-first-order, and intraparticle diffusion were used for analyzing the kinetic data. JG dye's adsorption kinetics fit the PSO kinetic model well (R2= 0.999). Furthermore, the thermodynamic functions such as entropy (ΔS*), enthalpy (ΔH*), and Gibbs free energy (ΔG*) were evaluated. The positive value of (ΔH*) confirms that the adsorption process is endothermic. Also, the positive value of ΔS* suggests an increase in randomness at the solid-liquid interface during dye adsorption, and non-spontaneous as evidenced by positive ΔG* values of 76.686, 76.130, 75.574, and 75.018 kJ/mol at different temperatures. Two segment-linear plots have been used to describe the intraparticle diffusion analysis of JG adsorption onto CGT, and the plot does not meet the origin point, indicating that the intraparticle diffusion was not the only controlling step. Based on the calculated value of ΔH*= 92.701 kJ/mol, which means that the adsorption is a chemical type. Langmuir, Freundlich, and Temkin isotherms were studied for their isothermal behavior. Also, the equilibrium state is attained in 45 minutes. At 318.15 K, the maximum removal percentage of JG achieved is 99.96%, indicating that the graphite surface is suitable as an adsorbent surface for removing JG dye in the temperature range studied
The nuclear density distributions and size radii are calculated for one-proton 8B, two-proton 17Ne, one-neutron 11Be and two-neutron 11Li halo nuclei. The theoretical outlines of calculations assume that the nuclei understudy are composed of two parts: the stable core and the unstable halo. The core part is studied using the radial wave functions of harmonic-oscillator (HO) potentials, while the halo is studied through Woods-Saxon (WS) potential. The long tail behaviour which is the main characteristic of the halo nuclei are well generated in comparison with experimental data. The calculated size radii are in good agreement with experimental values. The elastic electron scattering form factors of the C0 component are also c
... Show MoreMetal and metal oxide NPs have shown to be perfectly synthesized by using plant extracts with high efficiency, low cost and low toxicity. Our goal was to synthesize ZnO NPs by using an extract of pomegranate seeds and investigate the anticorrosion, antimicrobial and antioxidant properties of the synthesized ZnO NPs. The results have shown that the use of pomegranate in the green synthesis of ZnO NPs gave a good yield, with a low cost and non-toxic approach. The electrophoretic deposition (EPD) was used to coat stainless steel (S.S) by synthesized ZnO NPs in an alcoholic solution at room temperature producing a good coating against corrosion. The corrosion properties were investigated in a saline solution and a temperature range of (293–32
... Show MoreIn this research , phthallic anhydride ring is opened with 4-methyl aniline and acetone as a solvent to results the compound [I] that reacted with dimethyl sulphate and anhydrous sodium carbonate formation to phathalate ester [II], while the acid hydrazide compound [III], was obtained from mixed the compound [II]with hydrazine hydrate, Synthesis four type of shiff bases[IV]a-d was synthesized from the reaction of acid hydrazide [III] with aromatic aldehyde or ketone , when reacted Shiff bases with phthalic anhydride or naphthalicanhydride,I get eight derivatives of oxazepine [V]a-d , [VI]a-d. The bacterial activity of the new compounds studied by four species of bacteria: Esherichia Coli, Enterobactecloacae (Gram negative) and staphylococcu
... Show MoreBio-diesel is an attractive fuel fordiesel engines. The feedstock for bio-diesel production is usually vegetable oil, waste cooking oil, or animal fats. This work provides an overview concerning bio-diesel production. Also, this work focuses on the commercial production of biodiesel. The objective is to study the influence of these parameters on the yield of produced. The biodiesel production affecting by many parameters such s alcohol ratio (5%, 10%,15 %, 20%,25%,30%35% vol.), catalyst loading (5,10,15,20,25) g,temperature (45,50,55,60,65,70,75)°C,reaction time (0-6) h, mixing rate (400-1000) rpm. the maximum bio-diesel production yield (95%) was obtained using 20% methanol ratio and 15g biocatalyst at 60°C.
This paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ΔG, ΔH, and ΔS thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated.
This paper is summarized with one of the applications of adsorption behavior; A UV-Vis method has been applied to survey the isotherm of adsorption. Results for experimental showed the applicability of Langmuir equation. The effect of temperature on the adsorption of cobalt (II) Complex by bentonite surface was studied. The results shown that the amount of adsorption was formed to increase, such as the temperature increase (Endothermic process). Cobalt (II) Complex has adsorption studies by bentonite surface at different pH values (1.6-10); these studies displayed an increase in adsorption with increasing pH. ∆G, ∆H, and ∆S thermodynamic functions of the cobalt (II) Complex for their adsorption have been calculated
This work was conducted to determine the volumetric mass transfer coefficient (Ky.a) infixed bed adsorption using hexane-benzene mixture by adsorption onto a fixed bed of white silica gel. Benzene concentration was measured by gas chromatography. The effect of feed flow rate and initial concentration of benzene in hexane-benzene mixture on the volumetric mass transfer coefficient and on the adsorption capacity of silica gel was investigated.
In general, the volumetric mass transfer coefficient increases with increasing hexane flow rate, and with increasing initial concentration of benzene in the mixture. The ultimate value of (Ky.a) was at 53 ml/min of hexane flow rate with benzene initial concentration of (6.53 wt. %), and it wa
... Show More