The blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six different controllers are applied and compared for BPA in WT: type-1 fuzzy logic controller (T1-FLC), interval type-2 fuzzy logic controller (IT2-FLC), interval type-3 fuzzy logic controller (IT3-FLC), optimal hybrid type-1 fuzzy-PID controller (HT1-FPIDC), optimal hybrid type-2 fuzzy-PID controller (HT2-FPIDC), and optimal hybrid type-3 fuzzy-PID controller (HT3-FPIDC). The comparison between Mamdani and Sugeno fuzzy inference systems (FIS) has been applied to find the best inference system. Genetic Algorithm (GA) and Particle swarm optimization (PSO) are used to find the optimal tuning of PID parameters. The results of the 500-kw horizontal axis wind turbine show that Sugeno FIS has higher stability in output power generation than Mamdani FIS. Also, optimal HT3-FPIDC based on Mamdani FIS with PSO provides 19.74 % lower absolute summation error (ASE) than Sugeno FIS in optimal HT2-FLC with PSO and 39.03 % lower ASE than optimal HT1-FLC based on Sugeno FIS with PSO. Finally, the proposed optimal HT3-FPIDC based on PSO and Mamdani FIS provides the optimal results in terms of consistent output power generation at rated value.
In this work, plasma parameters such as (electron temperature (Te), electron density (ne), plasma frequency (fp) and Debye length (λD)) were studied using spectral analysis techniques. The spectrum of the plasma was recorded with different energy values, SnO2 and ZnO anesthetized at a different ratio (X = 0.2, 0.4 and 0.6) were recorded. Spectral study of this mixing in the air. The results showed electron density and electron temperature increase in zinc oxide: tin oxide alloy targets. It was located that The intensity of the lines increases in different laser peak powers when the laser peak power increases and then decreases when the force continues to increase.
In this work, plasma parameters such as, the electron temperature )Te(, electron density ne, plasma frequency )fp(, Debye length )λD(
and Debye number )ND), have been studied using optical emission spectroscopy technique. The spectrum of plasma with different values of energy, Pb doped CuO at different percentage (X=0.6, 0.7, 0.8) were recorded. The spectroscopic study for these mixing under vacuum with pressure down to P=2.5×10-2 mbar. The results of electron temperature for X=0.6 range (1.072-1.166) eV, for X=0.7 the Te range (1.024-0.855) eV and X=0.8 the Te is (1.033-0.921) eV. Optical properties of CuO:Pb thin films were determined through the optical transmission method using ultraviolet visible spectrophotometer within the ra
In this research, that been focused on the most important economic benefits expected when applying the three standards of sustainability in construction projects (economic, environmental and social). Fuzzy AHP, a multi-decision decision-making technique for evaluating construction projects. Which when used we get the speed and accuracy in the results. Using this technique will reduce uncertainties decisions significantly (fuzzy environment), that found in most projects .The results of the data analysis showed that the economic standards take the greatest relative importance (60%) among the three sustainability standards. Therefore, the implementation of any standards need a cost so the economic benefit of any proje
... Show MoreIn the hybrid coolingsolar systems , a solar collectoris used to convertsolar energy intoheat sourcein order to super heat therefrigerant leave thecompressor,andthisprocess helpsin the transformation ofrefrigerant state from gaseous statetothe liquid statein upper two-thirdsof thecondenserinstead of the lower two-thirdssuchas in thetraditional air-conditioning systems and this willreduce theenergyneeded torun the process ofcooling.In this research two hybrid air-conditioning system with an evacuated tube solar collector were used, therefrigerant was R22 and the capacity was 2 tons each.The tilt angle of the evacuated tube solar collector was changed and the solar collector fluid was replaced into oil instead of water.A comparison wasi
... Show MoreEconomic organizations operate in a dynamic environment, which necessitates the use of quantitative techniques to make their decisions. Here, the role of forecasting production plans emerges. So, this study aims to the analysis of the results of applying forecasting methods to production plans for the past years, in the Diyala State Company for Electrical Industries.
The Diyala State Company for Electrical Industries was chosen as a field of research for its role in providing distinguished products as well as the development and growth of its products and quality, and because it produces many products, and the study period was limited to ten years, from 2010 to 2019. This study used the descriptive approa
... Show MoreThe aim of this study is to investigate the nature of the relationship between domestic savings and domestic investment, or rather the efficiency of domestic savings in financing development in Algeria, in order to explain this relationship, identify the challenges to investment, and finance and accelerate economic growth. The economic measurement methodology has estimated the relationship between the savings rate and the local investment rate in the Algerian economy. We have annual data for the period 1970-2014. One of the most important conclusions is that there is no relationship between savings and investment, nor even an integration between them. To illustrate this, the use of some statistical tools, a
... Show MoreThe present work includes the preparation and characterization of{Co(II) , Ni(II), Pd(II), Fe(III) , Ru(III),Rh(III), Os(III) , Ir(III) , Pt(IV) and VO(IV)}complexes of a new ligand 4-[(1-phenyl-2,3-dimethyl-3-pyrozoline-5-one)azo]-N,N-dimethylanline (PAD). The product (PAD) was isolated,studies and characterized by phsical measurements,i.e., (FT-IR), (UV) Spectroscopy and elemental analysis(C.H.N). The prepared complexes were identified and their structural geometric were suggested in solid state by using flame atomic absorption, elemental analysis(C.H.N), (FT-IR) and (UV-Vis) Spectroscopy, as well as magnetic susceptibility and conductivity measurements . The study of the nature of the complexes formed in( ethanolic solution) following t
... Show MoreEight new complexes with the general formula [M(L)2(H2O)2] were prepared resulting from the reaction of the new Schiff base ligand [(E)-5- ((2-hydroxybenzylidene)amino)-2-phenyl-2,4-dihydro-3H-pyrazol-3- one(L)] with metal ions [manganese, cadmium, zinc, copper, nickel, cobalt, Mercury Bivalent and tetravalent platinum. This ligand was derived from the reaction of the amine (5-amino-2-phenyl-2,4-dihydro3H-pyrazol-3-one) with Salicylaldehyde, which is linked to the metal ions via two atoms. The nitrogen is the isomethene group, and the oxygen is the hydroxide group of the pyrazoline ring. The prepared compounds were characterized using infrared spectroscopy, nuclear magnetic resonance spectroscopy, and ultraviolet spectroscopy, and from the
... Show More 
        